These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4025974)

  • 1. Mitochondrial damage during cerebral ischemia.
    Fiskum G
    Ann Emerg Med; 1985 Aug; 14(8):810-5. PubMed ID: 4025974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postischemic tissue injury by iron-mediated free radical lipid peroxidation.
    White BC; Krause GS; Aust SD; Eyster GE
    Ann Emerg Med; 1985 Aug; 14(8):804-9. PubMed ID: 4025973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of mitochondria in ischemic cell injury and in regulation of intracellular calcium.
    Fiskum G
    Am J Emerg Med; 1983 Sep; 1(2):147-53. PubMed ID: 6680614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early reversal of acidosis and metabolic recovery following ischemia.
    Hoffman TL; LaManna JC; Pundik S; Selman WR; Whittingham TS; Ratcheson RA; Lust WD
    J Neurosurg; 1994 Oct; 81(4):567-73. PubMed ID: 7931590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology of resuscitation.
    Winegar CD; White BC
    Emerg Med Clin North Am; 1983 Dec; 1(3):479-99. PubMed ID: 6441702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain acidosis.
    Rehncrona S
    Ann Emerg Med; 1985 Aug; 14(8):770-6. PubMed ID: 3927794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of mitochondria in ischemic heart disease.
    Ferrari R
    J Cardiovasc Pharmacol; 1996; 28 Suppl 1():S1-10. PubMed ID: 8891865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat.
    Hillered L; Smith ML; Siesjö BK
    J Cereb Blood Flow Metab; 1985 Jun; 5(2):259-66. PubMed ID: 3988825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chemical ischemia on purine nucleotides, free radical generation, lipids peroxidation and intracellular calcium levels in C2C12 myotube derived from mouse myocytes.
    Boffi FM; Ozaki J; Matsuki N; Inaba M; Desmaras E; Ono K
    J Vet Med Sci; 2002 Jun; 64(6):483-8. PubMed ID: 12130831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology.
    Siesjö BK
    J Neurosurg; 1992 Aug; 77(2):169-84. PubMed ID: 1625004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mild Acidosis Protects Neurons during Oxygen-Glucose Deprivation by Reducing Loss of Mitochondrial Respiration.
    Zhu MY; Zhang DL; Zhou C; Chai Z
    ACS Chem Neurosci; 2019 May; 10(5):2489-2497. PubMed ID: 30835994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology.
    Rehncrona S; Rosén I; Siesjö BK
    J Cereb Blood Flow Metab; 1981; 1(3):297-311. PubMed ID: 7328145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms for ischemic brain damage and aspects on protection.
    Rehncrona S
    Acta Neurochir Suppl (Wien); 1986; 36():125-8. PubMed ID: 3467540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the molecular pathology of ischemic renal cell death. Reversible and irreversible cellular and mitochondrial metabolic alterations.
    Vogt MT; Farber E
    Am J Pathol; 1968 Jul; 53(1):1-26. PubMed ID: 4231728
    [No Abstract]   [Full Text] [Related]  

  • 15. Paradoxical mitochondrial oxidation in perinatal hypoxic-ischemic brain damage.
    Yager JY; Brucklacher RM; Vannucci RC
    Brain Res; 1996 Mar; 712(2):230-8. PubMed ID: 8814897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial polarization in rat hippocampal astrocytes is resistant to cytosolic Ca(2+) loads.
    Kahlert S; Schild L; Reiser G
    J Neurosci Res; 2001 Dec; 66(5):1019-27. PubMed ID: 11746432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial effect of fructose-1,6-bisphosphate on mitochondrial function during ischemia-reperfusion of rat liver.
    Sano W; Watanabe F; Tamai H; Furuya E; Mino M
    Gastroenterology; 1995 Jun; 108(6):1785-92. PubMed ID: 7768384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage.
    Bickler PE; Hansen BM
    Brain Res; 1994 Dec; 665(2):269-76. PubMed ID: 7534604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Possible participation of a free-radical lipid intermediate in the coupling of oxidation and phosphorylation].
    Davletshina LN; Dmitriev LF; Ivanov II
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1984; (9):25-30. PubMed ID: 6498239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.