These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 4026267)

  • 1. Inhibition of Chlamydia trachomatis growth in McCoy, HeLa, and human prostate cells by zinc.
    Greenberg SB; Harris D; Giles P; Martin RR; Wallace RJ
    Antimicrob Agents Chemother; 1985 Jun; 27(6):953-7. PubMed ID: 4026267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The binding of Chlamydia trachomatis and zinc to McCoy cells (mouse fibroblasts).
    Sugarman B; Agbor P
    Infection; 1987; 15(1):35-9. PubMed ID: 3570480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc and Chlamydia trachomatis.
    Sugarman B; Epps LR
    Proc Soc Exp Biol Med; 1985 Jul; 179(3):382-7. PubMed ID: 4001132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Chlamydia trachomatis with human genital epithelium in culture.
    Moorman DR; Sixbey JW; Wyrick PB
    J Gen Microbiol; 1986 Apr; 132(4):1055-67. PubMed ID: 3760816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on the inhibitory effects of minocycline on genital Chlamydia trachomatis in McCoy cell culture].
    Hosomura Y
    Kansenshogaku Zasshi; 1990 Mar; 64(3):310-20. PubMed ID: 2358712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cortisol on the growth of Chlamydia trachomatis in McCoy cells.
    Bushell AC; Hobson D
    Infect Immun; 1978 Sep; 21(3):946-53. PubMed ID: 711342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of host cells and Chlamydia trachomatis in medium containing serum from 16-week-old calves.
    Levy NJ; Benes S; McCormack WM
    J Clin Microbiol; 1983 Jan; 17(1):68-71. PubMed ID: 6826711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferon-induced inhibition of Chlamydia trachomatis: dissociation from antiviral and antiproliferative effects.
    de la Maza LM; Peterson EM; Goebel JM; Fennie CW; Czarniecki CW
    Infect Immun; 1985 Mar; 47(3):719-22. PubMed ID: 3972450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Factors affecting the results of culture of Chlamydia trachomatis in a McCoy cell culture].
    Stefánik M; Valkoun A
    Cesk Epidemiol Mikrobiol Imunol; 1991 Nov; 40(4-5):229-35. PubMed ID: 1838714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attachment and internalization of a Chlamydia trachomatis lymphogranuloma venereum strain by McCoy cells: kinetics of infectivity and effect of lectins and carbohydrates.
    Söderlund G; Kihlström E
    Infect Immun; 1983 Dec; 42(3):930-5. PubMed ID: 6642670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis in cell culture. II. Susceptibility of seven established mammalian cell types in vitro. Adaptation of trachoma organisms to McCoy and BHK-21 cells.
    Rota TR
    In Vitro; 1977 May; 13(5):280-92. PubMed ID: 559642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Resistance Screening in Chlamydia trachomatis by Optimized McCoy Cell Culture System and Direct qPCR-Based Monitoring of Chlamydial Growth.
    Meštrović T; Virok DP; Ljubin-Sternak S; Raffai T; Burián K; Vraneš J
    Methods Mol Biol; 2019; 2042():33-43. PubMed ID: 31385269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells.
    Yamakawa K; Matsuo J; Okubo T; Nakamura S; Yamaguchi H
    J Infect Chemother; 2018 Feb; 24(2):130-137. PubMed ID: 29132924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of Chlamydia trachomatis with mammalian and cultured insect cells lacking putative chlamydial receptors.
    Allan I; Pearce JH
    Microb Pathog; 1987 Jan; 2(1):63-70. PubMed ID: 3507553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of calf serum in the growth of Chlamydia trachomatis in McCoy cell cultures.
    Karayiannis P; Hobson D
    J Gen Microbiol; 1981 Jan; 122(1):47-54. PubMed ID: 7320693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Chlamydia trachomatis growth in endometrial cells by copper: possible relevance for the use of the copper IUD.
    Kleinman D; Sarov I; Insler V
    Contraception; 1989 Jun; 39(6):665-76. PubMed ID: 2666020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Chlamydia trachomatis inclusions in McCoy and HeLa-229 cells: an alternative staining technique using toluidine blue.
    Mohammed NR; Hillary IB
    J Clin Pathol; 1984 Jun; 37(6):682-5. PubMed ID: 6202722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of an ocular strain of Chlamydia trachomatis on Chang conjunctival cells.
    Moffa TG; DeToma FJ; Frederick SE; Howe M
    Ophthalmic Res; 1989; 21(5):388-91. PubMed ID: 2601944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation.
    Lee CK
    Infect Immun; 1981 Feb; 31(2):584-91. PubMed ID: 7216462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.