These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4026293)

  • 1. Effects of diffusion on the electrophoretic behavior of associating systems: the Gilbert-Jenkins theory revisited.
    Cann JR
    Arch Biochem Biophys; 1985 Aug; 240(2):489-99. PubMed ID: 4026293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sedimentation velocity analysis of heterogeneous protein-protein interactions: sedimentation coefficient distributions c(s) and asymptotic boundary profiles from Gilbert-Jenkins theory.
    Dam J; Schuck P
    Biophys J; 2005 Jul; 89(1):651-66. PubMed ID: 15863474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontal gel chromatography of interacting systems: theoretical and experimental evaluation of the shapes of elution profiles for systems of the type A + B in equilibrium C.
    Cann JR; Winzor DJ
    Arch Biochem Biophys; 1987 Jul; 256(1):78-89. PubMed ID: 3038030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of the reaction boundary of rapidly interacting macromolecules in sedimentation velocity.
    Schuck P
    Biophys J; 2010 Jun; 98(11):2741-51. PubMed ID: 20513419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sedimentation patterns of rapidly reversible protein interactions.
    Schuck P
    Biophys J; 2010 May; 98(9):2005-13. PubMed ID: 20441765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay of diffusional and electrophoretic transport mechanisms of charged solutes in the liquid film surrounding charged nonporous adsorbent particles employed in finite bath adsorption systems.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2002 Apr; 248(2):504-20. PubMed ID: 16290557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: an interplay between theory and practice.
    Hjertén S
    Electrophoresis; 1990 Sep; 11(9):665-90. PubMed ID: 2257839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning molecular sieve chromatography of interacting protein systems. Simulation of large zone behavior for self-associating solutes undergoing rapid chemical equilibration under kinetic control.
    Chun PW; Yang MC
    Biophys Chem; 1978 Jan; 7(4):347-66. PubMed ID: 623875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of electrophoretic separations: effect of numerical and molecular diffusion on pH calculations in poorly buffered systems.
    Sounart TL; Baygents JC
    Electrophoresis; 2000 Jul; 21(12):2287-95. PubMed ID: 10939437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC.
    Lee JW; Row KH
    J Sep Sci; 2009 Jan; 32(2):221-30. PubMed ID: 19156644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of moving boundaries in electrophoretic systems with multivalent weak electrolytes: principles of non-Kohlrausch concentration adjustment.
    Malá Z; Gebauer P
    Electrophoresis; 2006 Dec; 27(23):4601-9. PubMed ID: 17091467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step width, spacing, and resolution in gradient elution moving boundary electrophoresis. Part 1. Theory and comparison with zone electrophoresis.
    Ross D
    Electrophoresis; 2010 Nov; 31(22):3650-7. PubMed ID: 21077236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of flow and diffusion on protein separation in a continuous flow electrophoresis cell: computation procedure.
    Biscans B; Alinat P; Bertrand J; Sanchez V
    Electrophoresis; 1988 Feb; 9(2):84-9. PubMed ID: 3234342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new type of migrating zone boundary in electrophoresis: 1. General description of boundary behavior based on electromigration dispersion velocity profiles.
    Gebauer P; Bocek P
    Electrophoresis; 2005 Jan; 26(2):453-62. PubMed ID: 15657895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of electrophoresis of reacting systems as applied to the sulfhydryl oxidation of creatine kinase.
    Cann JR; Fink NH; Winzor DJ
    Arch Biochem Biophys; 1983 Feb; 221(1):57-63. PubMed ID: 6830265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymptotic velocity of one dimensional diffusions with periodic drift.
    Collet P; Martínez S
    J Math Biol; 2008 Jun; 56(6):765-92. PubMed ID: 17960387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossover from nonclassical to classical chemical kinetics in an initially separated A + B<-->C reaction-diffusion system with arbitrary diffusion constants.
    Sinder M; Pelleg J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt A):4935-42. PubMed ID: 11031536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.