These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 4026825)

  • 1. Conformational alteration in alpha-toxin from Staphylococcus aureus concomitant with the transformation of the water-soluble monomer to the membrane oligomer.
    Ikigai H; Nakae T
    Biochem Biophys Res Commun; 1985 Jul; 130(1):175-81. PubMed ID: 4026825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure and assembly mechanism of an oligomeric channel protein.
    Tobkes N; Wallace BA; Bayley H
    Biochemistry; 1985 Apr; 24(8):1915-20. PubMed ID: 4016091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus.
    Raja SM; Rawat SS; Chattopadhyay A; Lala AK
    Biophys J; 1999 Mar; 76(3):1469-79. PubMed ID: 10049328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tertiary structural changes of the alpha-hemolysin from Staphylococcus aureus on association with liposome membranes.
    Bortoleto RK; de Oliveira AH; Ruller R; Arni RK; Ward RJ
    Arch Biochem Biophys; 1998 Mar; 351(1):47-52. PubMed ID: 9500849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium ion-mediated regulation of the alpha-toxin pore of Staphylococcus aureus.
    Tokunaga H; Nakae T
    Biochim Biophys Acta; 1992 Mar; 1105(1):125-30. PubMed ID: 1567891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Staphylococcal alpha-toxin: oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles.
    Bhakdi S; Füssle R; Tranum-Jensen J
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5475-9. PubMed ID: 6272304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the alpha-hemolysin monomer from Staphylococcus aureus.
    Meesters C; Brack A; Hellmann N; Decker H
    Proteins; 2009 Apr; 75(1):118-26. PubMed ID: 18798569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of staphylococcal alpha-toxin with peptide-induced antibodies.
    Harshman S; Alouf JE; Siffert O; Baleux F
    Infect Immun; 1989 Dec; 57(12):3856-62. PubMed ID: 2509372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-barrel membrane protein folding and structure viewed through the lens of alpha-hemolysin.
    Montoya M; Gouaux E
    Biochim Biophys Acta; 2003 Jan; 1609(1):19-27. PubMed ID: 12507754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of Staphylococcus aureus alpha-toxin: effects of trypsin treatment.
    Olofsson A; Hebert H; Thelestam M
    J Struct Biol; 1991 Jun; 106(3):199-204. PubMed ID: 1804278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the circular dichroic spectrum of colchicine associated with its binding to tubulin.
    Detrich HW; Williams RC; Macdonald TL; Wilson L; Puett D
    Biochemistry; 1981 Oct; 20(21):5999-6005. PubMed ID: 7306489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of Staphylococcus aureus alpha-toxin by diethylpyrocarbonate: role of histidines in its membrane-damaging properties.
    Pederzolli C; Cescatti L; Menestrina G
    J Membr Biol; 1991 Jan; 119(1):41-52. PubMed ID: 2008011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of Staphylococcus aureus bi-component gamma-hemolysins and leucocidins with cells and lipid membranes.
    Ferreras M; Höper F; Dalla Serra M; Colin DA; Prévost G; Menestrina G
    Biochim Biophys Acta; 1998 Nov; 1414(1-2):108-26. PubMed ID: 9804914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding of Vibrio cholerae hemolysin induces oligomerization of the toxin monomer.
    Chattopadhyay K; Banerjee KK
    J Biol Chem; 2003 Oct; 278(40):38470-5. PubMed ID: 12878594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface properties of membrane systems. Transport of staphylococcal delta-toxin from aqueous to membrane phase.
    Colacicco G; Basu MK; Buckelew AR; Bernheimer AW
    Biochim Biophys Acta; 1977 Mar; 465(2):378-90. PubMed ID: 16250348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin.
    Füssle R; Bhakdi S; Sziegoleit A; Tranum-Jensen J; Kranz T; Wellensiek HJ
    J Cell Biol; 1981 Oct; 91(1):83-94. PubMed ID: 6271794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staphylococcal alpha-toxin: a study of membrane penetration and pore formation.
    Harshman S; Boquet P; Duflot E; Alouf JE; Montecucco C; Papini E
    J Biol Chem; 1989 Sep; 264(25):14978-84. PubMed ID: 2475492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A circular-dichroism study of epidermolytic toxins A and B from Staphylococcus aureus.
    Bailey CJ; Martin SR; Bayley PM
    Biochem J; 1982 Jun; 203(3):775-8. PubMed ID: 7115314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate.
    Rausell C; Muñoz-Garay C; Miranda-CassoLuengo R; Gómez I; Rudiño-Piñera E; Soberón M; Bravo A
    Biochemistry; 2004 Jan; 43(1):166-74. PubMed ID: 14705942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystalline layers and three-dimensional structure of Staphylococcus aureus alpha-toxin.
    Olofsson A; Kavéus U; Hacksell I; Thelestam M; Hebert H
    J Mol Biol; 1990 Jul; 214(1):299-306. PubMed ID: 2370667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.