These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 4026837)

  • 1. An HPLC/push-pull perfusion technique for investigating peptide metabolism.
    Singh AV; Morris HR
    Biochem Biophys Res Commun; 1985 Jul; 130(1):37-42. PubMed ID: 4026837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholecystokinin turnover in brain.
    Meek JL; Iadarola MJ; Giorgi O
    Brain Res; 1983 Oct; 276(2):375-8. PubMed ID: 6313133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local biotransformation of des-Tyr1-gamma-endorphin in brain studied by a push-pull technique and HPLC analysis.
    Burbach JP
    Neurosci Lett; 1983 Aug; 38(3):281-5. PubMed ID: 6355906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation and computational modeling of tissue damage from low-flow push-pull perfusion sampling in vivo.
    Cepeda DE; Hains L; Li D; Bull J; Lentz SI; Kennedy RT
    J Neurosci Methods; 2015 Mar; 242():97-105. PubMed ID: 25614385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New triple microbore cannula system for push-pull perfusion of brain nuclei of the rat.
    Zhang X; Myers RD; Wooles WR
    J Neurosci Methods; 1990 May; 32(2):93-104. PubMed ID: 1973204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic processing of cholecystokinin peptides. II. Cellular metabolism, transport, and biliary excretion.
    Gores GJ; Miller LJ; LaRusso NF
    Am J Physiol; 1986 Mar; 250(3 Pt 1):G350-6. PubMed ID: 3953819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified push-pull system for the localised perfusion of brain tissue.
    Redgrave P
    Pharmacol Biochem Behav; 1977 Apr; 6(4):471-4. PubMed ID: 882584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Evaluation of an in vivo perfusion technic for the dental pulp in rats as validated by demonstration of the release of prostaglandins].
    Favre de Thierrens C; Deville de Periere D; Arancibia S
    J Biol Buccale; 1987 Dec; 15(4):229-34. PubMed ID: 3483372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prohormone convertase 1 (PC1) when expressed with pro cholecystokinin (pro CCK) in L cells performs three endoproteolytic cleavages which are observed in rat brain and in CCK-expressing endocrine cells in culture, including the production of glycine and arginine extended CCK8.
    Wang W; Birch NP; Beinfeld MC
    Biochem Biophys Res Commun; 1998 Jul; 248(3):538-41. PubMed ID: 9703961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass-plastic push-pull cannula system for regional perfusion of sites in the brain.
    Myers RD; Hepler JR
    J Neurosci Methods; 1983 Oct; 9(2):163-71. PubMed ID: 6316040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of in vivo brain site perfusion with the push-pull cannula.
    Honchar MP; Hartman BK; Sharpe LG
    Am J Physiol; 1979 Jan; 236(1):R48-56. PubMed ID: 434187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An on-line push/pull perfusion-based hollow-fiber liquid-phase microextraction system for high-performance liquid chromatographic determination of alkylphenols in water samples.
    Chao YY; Jian ZX; Tu YM; Wang HW; Huang YL
    Analyst; 2013 Jun; 138(11):3271-9. PubMed ID: 23612246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitation and identification of two cholecystokinin peptides, CCK-4 and CCK-8s, in rat brain by HPLC and fast atom bombardment mass spectrometry.
    Qureshi GA; Bednar I; Min Q; Södersten P; Silberring J; Nyberg F; Thörnwall M
    Biomed Chromatogr; 1993; 7(5):251-5. PubMed ID: 8305854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of free intracellular and transfer RNA amino acid specific activity and protein synthesis in rat brain in vivo.
    Hargreaves-Wall KM; Buciak JL; Pardridge WM
    J Cereb Blood Flow Metab; 1990 Mar; 10(2):162-9. PubMed ID: 2303533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo output of dopamine and metabolites from the rat caudate nucleus as estimated with push-pull perfusion on-line with HPLC-EC in unrestrained, conscious rats. I. Chromatographic and biological validation.
    Chen JC; Rhee KK; Beaudry DM; Ramirez VD
    Neuroendocrinology; 1984 May; 38(5):362-70. PubMed ID: 6203048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of intraperitoneal CCK-8 on food intake and brain orexin-A after 48 h of fasting in the rat.
    Gallmann E; Arsenijevic D; Williams G; Langhans W; Spengler M
    Regul Pept; 2006 Jan; 133(1-3):139-46. PubMed ID: 16271404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [3H]pBC 264, a suitable probe for studying cholecystokinin-B receptors: binding characteristics in rodent brains and comparison with [3H]SNF 8702.
    Durieux C; Ruiz-Gayo M; Corringer PJ; Bergeron F; Ducos B; Roques BP
    Mol Pharmacol; 1992 Jun; 41(6):1089-95. PubMed ID: 1614411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution of chromatographic characterization of an amino-terminal fragment of cholecystokinin (CCK) 58 in rat brain.
    Beinfeld MC
    Biochem Biophys Res Commun; 1985 Mar; 127(3):720-5. PubMed ID: 3985953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic processing of cholecystokinin peptides. I. Structural specificity and mechanism of hepatic extraction.
    Gores GJ; LaRusso NF; Miller LJ
    Am J Physiol; 1986 Mar; 250(3 Pt 1):G344-9. PubMed ID: 3953818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by the neuropeptide cholecystokinin (CCK-8S) of protein phosphorylation in the neostriatum.
    Snyder GL; Fisone G; Morino P; Gundersen V; Ottersen OP; Hökfelt T; Greengard P
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11277-81. PubMed ID: 8248241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.