These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 4027036)

  • 1. [Kinetics of cellular adhesion to different materials used in implants].
    Cannas M; Carando S; Denicolai F; Poncino A
    Boll Soc Ital Biol Sper; 1985 Mar; 61(3):461-5. PubMed ID: 4027036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [In vitro biocompatibility: increase in the capacity for adhesion in fibroblasts by materials pretreated with fibronectin].
    Cannas M; Amedeo MR; Sibelli P
    Boll Soc Ital Biol Sper; 1984 Oct; 60(10):1913-7. PubMed ID: 6518101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials.
    Rouahi M; Champion E; Hardouin P; Anselme K
    Biomaterials; 2006 May; 27(14):2829-44. PubMed ID: 16427124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of human osteoblasts to implant materials: integrin-mediated adhesion.
    Gronowicz G; McCarthy MB
    J Orthop Res; 1996 Nov; 14(6):878-87. PubMed ID: 8982129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone cell attachment to dental implants of different surface characteristics.
    Lumbikanonda N; Sammons R
    Int J Oral Maxillofac Implants; 2001; 16(5):627-36. PubMed ID: 11669244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material.
    Khadra M; Lyngstadaas SP; Haanaes HR; Mustafa K
    Biomaterials; 2005 Jun; 26(17):3503-9. PubMed ID: 15621240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Assays of cytotoxicity of the Nickel-Titanium shape memory alloy].
    Assad M; Lombardi S; Bernèche S; Desrosiers EA; Yahia LH; Rivard CH
    Ann Chir; 1994; 48(8):731-6. PubMed ID: 7872622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of beta-stabilizing elements of titanium alloys.
    Eisenbarth E; Velten D; Müller M; Thull R; Breme J
    Biomaterials; 2004 Nov; 25(26):5705-13. PubMed ID: 15147816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizations of titanium implant surfaces. III.
    Keller JC; Stanford CM; Wightman JP; Draughn RA; Zaharias R
    J Biomed Mater Res; 1994 Aug; 28(8):939-46. PubMed ID: 7983092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein adsorption on titanium surfaces and their effect on osteoblast attachment.
    Yang Y; Cavin R; Ong JL
    J Biomed Mater Res A; 2003 Oct; 67(1):344-9. PubMed ID: 14517894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The fibronectin binding test: proposal of an experimental model for the evaluation of the biocompatibility of materials of orthopedic interest].
    Cannas M; Amedeo MR; Denicolai F
    Boll Soc Ital Biol Sper; 1984 Aug; 60(8):1521-5. PubMed ID: 6497987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior.
    Zhang YM; Bataillon-Linez P; Huang P; Zhao YM; Han Y; Traisnel M; Xu KW; Hildebrand HF
    J Biomed Mater Res A; 2004 Feb; 68(2):383-91. PubMed ID: 14704981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assays for adhesion and migration of osteoblastic cells (Saos-2) on titanium surfaces.
    Li CY; Gao SY; Terashita T; Shimokawa T; Kawahara H; Matsuda S; Kobayashi N
    Cell Tissue Res; 2006 Jun; 324(3):369-75. PubMed ID: 16450122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the soft tissue interface at titanium implants with different surface treatments: experimental study on rabbits.
    Ungersböck A; Pohler O; Perren SM
    Biomed Mater Eng; 1994; 4(4):317-25. PubMed ID: 7950879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bootstrap analysis of the relation between initial adhesive events and long-term cellular functions of human osteoblasts cultured on biocompatible metallic substrates.
    Bigerelle M; Anselme K
    Acta Biomater; 2005 Sep; 1(5):499-510. PubMed ID: 16701830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric acid passivation does not affect in vitro biocompatibility of titanium.
    Faria AC; Beloti MM; Rosa AL
    Int J Oral Maxillofac Implants; 2003; 18(6):820-5. PubMed ID: 14696657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Response of osteoblast cultures to titanium, steel and hydroxyapatite implants].
    Trentz OA; Platz A; Helmy N; Trentz O
    Swiss Surg; 1998; (4):203-9. PubMed ID: 9757811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hard, soft tissue and in vitro cell response to porous nickel-titanium: a biocompatibility evaluation.
    Rhalmi S; Odin M; Assad M; Tabrizian M; Rivard CH; Yahia LH
    Biomed Mater Eng; 1999; 9(3):151-62. PubMed ID: 10572619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.