These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 4027240)
1. Side-chain dynamics of two aromatic amino acids in pancreatic phospholipase A2 as studied by deuterium nuclear magnetic resonance. Allegrini PR; van Scharrenburg GJ; Slotboom AJ; de Haas GH; Seelig J Biochemistry; 1985 Jun; 24(13):3268-73. PubMed ID: 4027240 [TBL] [Abstract][Full Text] [Related]
2. Structural importance of the amino-terminal residue of pancreatic phospholipase A2. van Scharrenburg GJ; Jansen EH; Egmond MR; de Haas GH; Slotboom AJ Biochemistry; 1984 Dec; 23(25):6285-94. PubMed ID: 6441599 [TBL] [Abstract][Full Text] [Related]
3. Role of the N-terminus in the interaction of pancreatic phospholipase A2 with aggregated substrates. Properties and crystal structure of transaminated phospholipase A2. Dijkstra BW; Kalk KH; Drenth J; de Haas GH; Egmond MR; Slotboom AJ Biochemistry; 1984 Jun; 23(12):2759-66. PubMed ID: 6466614 [TBL] [Abstract][Full Text] [Related]
4. Rotational dynamics of the single tryptophan of porcine pancreatic phospholipase A2, its zymogen, and an enzyme/micelle complex. A steady-state and time-resolved anisotropy study. Ludescher RD; Johnson ID; Volwerk JJ; de Haas GH; Jost PC; Hudson BS Biochemistry; 1988 Aug; 27(17):6618-28. PubMed ID: 3219357 [TBL] [Abstract][Full Text] [Related]
5. Comparative optically detected magnetic resonance studies of mammalian phospholipase A2-lipid interactions. Mao SY; Maki AH; de Haas GH FEBS Lett; 1987 Jan; 211(1):83-8. PubMed ID: 3803590 [TBL] [Abstract][Full Text] [Related]
6. Proton-nuclear-magnetic-resonance/pH-titration studies of the histidines of pancreatic phospholipase A2. Aguiar A; De Haas GH; Jansen EH; Slotboom AJ; Williams RJ Eur J Biochem; 1979 Oct; 100(2):511-8. PubMed ID: 41713 [TBL] [Abstract][Full Text] [Related]
7. Anchoring of phospholipase A2: the effect of anions and deuterated water, and the role of N-terminus region. Jain MK; Maliwal BP; DeHaas GH; Slotboom AJ Biochim Biophys Acta; 1986 Sep; 860(3):448-61. PubMed ID: 3017420 [TBL] [Abstract][Full Text] [Related]
8. Binding of porcine pancreatic phospholipase A2 to various micellar substrate analogues. Involvement of histidine-48 and aspartic acid-49 in the binding process. Donné-Op den Kelder GM; Hille JD; Dijkman R; de Haas GH; Egmond MR Biochemistry; 1981 Jul; 20(14):4074-8. PubMed ID: 7284311 [TBL] [Abstract][Full Text] [Related]
9. Semisynthesis of phospholipase A2. The effect of substitution of amino-acid residues at positions 6 and 7 in bovine and porcine pancreatic phospholipases A2 on catalytic and substrate-binding properties. van Scharrenburg GJ; Puijk WC; de Haas GH; Slotboom AJ Eur J Biochem; 1983 Jun; 133(1):83-9. PubMed ID: 6852036 [TBL] [Abstract][Full Text] [Related]
10. Catalytic Ca2+-binding site of pancreatic phospholipase A2: laser-induced Eu3+ luminescence study. van Scharrenburg GJ; Slotboom AJ; de Haas GH; Mulqueen P; Breen PJ; Horrocks WD Biochemistry; 1985 Jan; 24(2):334-9. PubMed ID: 3978077 [TBL] [Abstract][Full Text] [Related]
11. Optically detected magnetic resonance studies of porcine pancreatic phospholipase A2 binding to a negatively charged substrate analogue. Mao SY; Maki AH; de Haas GH Biochemistry; 1986 May; 25(10):2781-6. PubMed ID: 3718919 [TBL] [Abstract][Full Text] [Related]
14. 1H NMR studies of bovine and porcine phospholipase A2: assignment of aromatic resonances and evidence for a conformational equilibrium in solution. Fisher J; Primrose WU; Roberts GC; Dekker N; Boelens R; Kaptein R; Slotboom AJ Biochemistry; 1989 Jul; 28(14):5939-46. PubMed ID: 2775744 [TBL] [Abstract][Full Text] [Related]
15. Methyl branching in short-chain lecithins: are both chains important for effective phospholipase A2 activity? DeBose CD; Burns RA; Donovan JM; Roberts MF Biochemistry; 1985 Mar; 24(6):1298-306. PubMed ID: 3986178 [TBL] [Abstract][Full Text] [Related]
16. A deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A2. Dempsey CE; Watts A Biochemistry; 1987 Sep; 26(18):5803-11. PubMed ID: 3676290 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical studies on the interaction of pancreatic phospholipase A2 with a micellar substrate analogue. Hille JD; Donné-Op den Kelder GM; Sauve P; de Haas GH; Egmond MR Biochemistry; 1981 Jul; 20(14):4068-73. PubMed ID: 7284310 [TBL] [Abstract][Full Text] [Related]
18. Calcium ion binding to pancreatic phospholipase A2 and its zymogen: a 43Ca NMR study. Drakenberg T; Andersson T; Forsén S; Wieloch T Biochemistry; 1984 May; 23(11):2387-92. PubMed ID: 6477872 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of prodan-phosphatidylcholine, a new fluorescent probe, and its interactions with pancreatic and snake venom phospholipases A2. Hendrickson HS; Dumdei EJ; Batchelder AG; Carlson GL Biochemistry; 1987 Jun; 26(12):3697-703. PubMed ID: 3651404 [TBL] [Abstract][Full Text] [Related]
20. Interaction of pancreatic phospholipases A2 and semisynthetic mutants with anionic substrates and substrate analogues. de Haas GH; van Scharrenburg GJ; Slotboom AJ Biochemistry; 1987 Jun; 26(12):3402-8. PubMed ID: 3651389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]