These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 4027608)

  • 1. Inhibition of nociceptive evoked activity in spinal neurons through a dorsal column-brainstem-spinal loop.
    Saadé NE; Tabet MS; Banna NR; Atweh SF; Jabbur SJ
    Brain Res; 1985 Jul; 339(1):115-8. PubMed ID: 4027608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of nociceptive withdrawal flexion reflexes through a dorsal column-brainstem-spinal loop.
    Saadé N; Atweh AF; Tabet MS; Jabbur SJ
    Brain Res; 1985 Jun; 335(2):306-8. PubMed ID: 4005558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effects from various types of dorsal column and raphe magnus stimulations on nociceptive withdrawal flexion reflexes.
    Saadé NE; Atweh SF; Privat A; Jabbur SJ
    Brain Res; 1999 Oct; 846(1):72-86. PubMed ID: 10536215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of segmental mechanisms by activation of a dorsal column brainstem spinal loop.
    Saadé NE; Tabet MS; Atweh SF; Jabbur SJ
    Brain Res; 1984 Sep; 310(1):180-4. PubMed ID: 6478238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raphe magnus-induced descending inhibition of spinal nociceptive neurons is mediated through contralateral spinal pathways in the cat.
    Sandkühler J; Maisch B; Zimmermann M
    Neurosci Lett; 1987 May; 76(2):168-72. PubMed ID: 3587751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descending control of spinal nociceptive transmission. Actions produced on spinal multireceptive neurones from the nuclei locus coeruleus (LC) and raphe magnus (NRM).
    Mokha SS; McMillan JA; Iggo A
    Exp Brain Res; 1985; 58(2):213-26. PubMed ID: 2987012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supraspinal inhibition of trigeminal input into subnucleus caudalis by dorsal column stimulation.
    Atweh SF; Dajani BM; Saadé NE; Jabbur SJ
    Brain Res; 1985 Dec; 348(2):401-4. PubMed ID: 4075098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of ventral tract and dorsal column inputs into the cat cuneate nucleus.
    Saadé NE; Jabbur SJ
    Brain Res; 1984 May; 299(1):178-81. PubMed ID: 6326961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms mediating the brain stem control of somatosensory transmission in the dorsal horn of the cat's spinal cord: an intracellular analysis.
    Mokha SS; Iggo A
    Exp Brain Res; 1987; 69(1):93-106. PubMed ID: 2830129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dorsal column input to inferior raphe centralis neurons.
    Saadé NE; Jundi AS; Jabbur SJ; Banna NR
    Brain Res; 1982 Nov; 250(2):345-8. PubMed ID: 7171992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Descending noradrenergic influences on pain.
    Jones SL
    Prog Brain Res; 1991; 88():381-94. PubMed ID: 1813927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG; Dostrovsky JO
    J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of dorsal column nuclei by stimulation of trigeminal afferents in decerebrate-decerebellate cats.
    Saadé NE; Dajani BM; Atweh SF; Jabbur SJ
    Brain Res; 1985 Dec; 348(2):405-7. PubMed ID: 3000508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supraspinal modulation of nociception in awake rats by stimulation of the dorsal column nuclei.
    Saadé NE; Tabet MS; Soueidan SA; Bitar M; Atweh SF; Jabbur SJ
    Brain Res; 1986 Mar; 369(1-2):307-10. PubMed ID: 3697746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of transmission in the cuneate nucleus by raphe and periaqueductal gray stimulation.
    Jundi AS; Saadé NE; Banna NR; Jabbur SJ
    Brain Res; 1982 Nov; 250(2):349-52. PubMed ID: 6293643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls.
    Villanueva L; Le Bars D
    Biol Res; 1995; 28(1):113-25. PubMed ID: 8728826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Are bulbo-spinal serotonergic systems involved in the detection of nociceptive messages? (author's transl)].
    Le Bars D; Dickenson AH; Rivot JP; Chitour D; Chaouch A; Kraus E; Besson JM
    J Physiol (Paris); 1981; 77(2-3):463-71. PubMed ID: 6270318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat.
    Sandkühler J; Fu QG; Zimmermann M
    J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffuse noxious inhibitory controls (DNIC) in animals and in man.
    Le Bars D; Villanueva L; Bouhassira D; Willer JC
    Patol Fiziol Eksp Ter; 1992; (4):55-65. PubMed ID: 1303506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.