These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Prefrontal influences upon the midbrain: a possible route for pain modulation. Hardy SG; Haigler HJ Brain Res; 1985 Jul; 339(2):285-93. PubMed ID: 4027627 [TBL] [Abstract][Full Text] [Related]
3. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia. Fardin V; Oliveras JL; Besson JM Brain Res; 1984 Jul; 306(1-2):105-23. PubMed ID: 6540613 [TBL] [Abstract][Full Text] [Related]
4. Stimulation-produced analgesia (SPA) from brain-stem and diencephalic sites in the rat: relationships between analgesia, aversion, seizures and catalepsy. Morgan MJ; Franklin KBJ Pain; 1988 Apr; 33(1):109-121. PubMed ID: 3380547 [TBL] [Abstract][Full Text] [Related]
5. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat. Sandkühler J; Gebhart GF Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063 [TBL] [Abstract][Full Text] [Related]
6. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation. Fardin V; Oliveras JL; Besson JM Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968 [TBL] [Abstract][Full Text] [Related]
7. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study. Freitas RL; Ferreira CM; Ribeiro SJ; Carvalho AD; Elias-Filho DH; Garcia-Cairasco N; Coimbra NC Exp Neurol; 2005 Feb; 191(2):225-42. PubMed ID: 15649478 [TBL] [Abstract][Full Text] [Related]
8. The relative efficacy of monopolar vs. bipolar electrodes in stimulation-produced analgesia. Thorn BE; Applegate L; Jones K Exp Brain Res; 1990; 79(2):266-70. PubMed ID: 2323373 [TBL] [Abstract][Full Text] [Related]
9. Molecular and electrophysiological changes in the prefrontal cortex-amygdala-dorsal periaqueductal grey pathway during persistent pain state and fear-conditioned analgesia. Butler RK; Nilsson-Todd L; Cleren C; Léna I; Garcia R; Finn DP Physiol Behav; 2011 Oct; 104(5):1075-81. PubMed ID: 21683728 [TBL] [Abstract][Full Text] [Related]
10. Differentiation of the substrates for analgesia and vocalizations elicited by midbrain stimulation in rats: refractory period estimates. Schenk S; Robinson B Behav Brain Res; 1988 Dec; 31(2):105-10. PubMed ID: 3202942 [TBL] [Abstract][Full Text] [Related]
11. Relationship between analgesia and cardiovascular changes induced by electrical stimulation of the mesencephalic periaqueductal gray matter in the rat. Depaulis A; Pechnick RN; Liebeskind JC Brain Res; 1988 Jun; 451(1-2):326-32. PubMed ID: 3251592 [TBL] [Abstract][Full Text] [Related]
12. A [14C]2-deoxyglucose analysis of the functional neural pathways of the limbic forebrain in the rat. IV. A pathway from the prefrontal cortical-medial thalamic system to the hypothalamus. Brutus M; Watson RE; Shaikh MB; Siegel HE; Weiner S; Siegel A Brain Res; 1984 Sep; 310(2):279-93. PubMed ID: 6488020 [TBL] [Abstract][Full Text] [Related]
13. Reciprocal interactions between the amygdala and ventrolateral periaqueductal gray in mediating of Q/N(1-17)-induced analgesia in the rat. Shane R; Acosta J; Rossi GC; Bodnar RJ Brain Res; 2003 Aug; 980(1):57-70. PubMed ID: 12865159 [TBL] [Abstract][Full Text] [Related]
14. The neural basis of footshock analgesia: the effect of periaqueductal gray lesions and decerebration. Watkins LR; Kinscheck IB; Mayer DJ Brain Res; 1983 Oct; 276(2):317-24. PubMed ID: 6627012 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the antinociceptive effect of morphine and glutamate at coincidental sites in the periaqueductal gray and medial medulla in rats. Jensen TS; Yaksh TL Brain Res; 1989 Jan; 476(1):1-9. PubMed ID: 2563331 [TBL] [Abstract][Full Text] [Related]
16. The effects of septal stimulation on spontaneous and tail-shock evoked neuronal activity in the brainstem of the rat. De Nasi PC; Thomas E Brain Res; 1982 Oct; 249(1):63-71. PubMed ID: 6291709 [No Abstract] [Full Text] [Related]
17. Medial frontal cortex lesions selectively attenuate the hot plate response: possible nocifensive apraxia in the rat. Pastoriza LN; Morrow TJ; Casey KL Pain; 1996 Jan; 64(1):11-17. PubMed ID: 8867243 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia. Young EG; Watkins LR; Mayer DJ Brain Res; 1984 Jan; 290(1):119-29. PubMed ID: 6692127 [TBL] [Abstract][Full Text] [Related]
19. Cross-tolerance between two brainstem sites supporting stimulation-produced analgesia. Thorn-Gray BE; Johnson MH; Ashbrook RM Behav Neural Biol; 1982 Sep; 36(1):69-76. PubMed ID: 6301419 [TBL] [Abstract][Full Text] [Related]
20. Site specificity in the development of tolerance to stimulation-produced analgesia from the periaqueductal gray matter of the rat. Morgan MM; Liebeskind JC Brain Res; 1987 Nov; 425(2):356-9. PubMed ID: 3427436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]