These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 4028799)

  • 1. 86-Rb efflux in normal and cataractous human lenses.
    Gandolfi SA; Tomba MC; Maraini G
    Curr Eye Res; 1985 Jul; 4(7):753-8. PubMed ID: 4028799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane permeability characteristics of perfused human senile cataractous lenses.
    Lucas VA; Duncan G; Davies P
    Exp Eye Res; 1986 Feb; 42(2):151-65. PubMed ID: 3699105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active and passive rubidium influx in normal human lenses and in senile cataracts.
    Maraini G; Pasino M
    Exp Eye Res; 1983 Apr; 36(4):543-49. PubMed ID: 6852132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations on trace elements in normal and senile cataractous lenses. Activation analysis of copper, zinc, manganese, cobalt, rubidium, scandium, and nickel.
    Rácz P; Ordögh M
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1977 Sep; 204(1):67-72. PubMed ID: 303483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The oxidative stress in the cataract formation].
    Obara Y
    Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium ATPase activity and membrane structure in clear and cataractous human lenses.
    Paterson CA; Zeng J; Husseini Z; Borchman D; Delamere NA; Garland D; Jimenez-Asensio J
    Curr Eye Res; 1997 Apr; 16(4):333-8. PubMed ID: 9134322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of triparanol-induced cataracts in the rat. II. Exchange of 22 Na, 42 K, and 86 Rb in cataractous and clearing lenses.
    Harris JE; Gruber L
    Invest Ophthalmol; 1972 Jul; 11(7):608-16. PubMed ID: 5046560
    [No Abstract]   [Full Text] [Related]  

  • 8. Increased ion traffic through non-specific cation pathways in the ageing human lens. Evidence from radiotracer fluxes studies.
    Gandolfi SA; Maraini G
    Exp Eye Res; 1991 Jan; 52(1):1-4. PubMed ID: 1907923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A study on cAMP and Ca-CaM of the epithelium in human normal and cataractous lenses].
    Liu X; Fang Q; Yan M
    Zhonghua Yan Ke Za Zhi; 1996 Mar; 32(2):107-9. PubMed ID: 9206225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione and glutathione-related enzymes in human cataractous lenses.
    Xie PY; Kanai A; Nakajima A; Kitahara S; Ohtsu A; Fujii K
    Ophthalmic Res; 1991; 23(3):133-40. PubMed ID: 1945285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Malonaldehyde, superoxide dismutase and human cataract].
    Lian H; Li S; Cao X; Pan S; Liang S
    Yan Ke Xue Bao; 1993 Dec; 9(4):186-9, 170. PubMed ID: 7957853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional water content of clear and cataractous human lenses.
    Deussen A; Pau H
    Ophthalmic Res; 1989; 21(5):374-80. PubMed ID: 2601943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Emory mouse cataract: increased accumulation of calcium during cataractogenesis.
    Kuck JF; Kuck KD
    Lens Eye Toxic Res; 1989; 6(4):853-62. PubMed ID: 2487287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the calcium concentration of cataractous and normal human lenses and protein fractions of cataractous lenses.
    Jedziniak JA; Nicoli DF; Yates EM; Benedek GB
    Exp Eye Res; 1976 Sep; 23(3):325-32. PubMed ID: 976373
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses.
    Garner MH; Spector A
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1274-7. PubMed ID: 6929483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on cataractogenesis in humans and in rats with alloxan-induced diabetes. I. Cation transport and sodium-potassium-dependent ATPase.
    Ahmad SS; Tsou KC; Ahmad SI; Rahman MA; Kirmani TH
    Ophthalmic Res; 1985; 17(1):1-11. PubMed ID: 2984622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.