These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Properties of the complexes of riboflavin 3',5'-bisphosphate and the apoflavodoxins from Megasphaera elsdenii and Desulfovibrio vulgaris. Vervoort J; van Berkel WJ; Mayhew SG; Müller F; Bacher A; Nielsen P; LeGall J Eur J Biochem; 1986 Dec; 161(3):749-56. PubMed ID: 3792314 [TBL] [Abstract][Full Text] [Related]
3. Two-dimensional NMR studies of the flavin binding site of Desulfovibrio vulgaris flavodoxin in its three redox states. Peelen S; Vervoort J Arch Biochem Biophys; 1994 Nov; 314(2):291-300. PubMed ID: 7979368 [TBL] [Abstract][Full Text] [Related]
4. Flavin-protein interactions in flavocytochrome b2 as studied by NMR after reconstitution of the enzyme with 13C- and 15N-labelled flavin. Fleischmann G; Lederer F; Müller F; Bacher A; Rüterjans H Eur J Biochem; 2000 Aug; 267(16):5156-67. PubMed ID: 10931200 [TBL] [Abstract][Full Text] [Related]
5. Nuclear-magnetic-resonance investigation of 15N-labeled flavins, free and bound to Megasphaera elsdenii apoflavodoxin. Franken HD; Rüterjans H; Müller F Eur J Biochem; 1984 Feb; 138(3):481-9. PubMed ID: 6692831 [TBL] [Abstract][Full Text] [Related]
6. A comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii. Vervoort J; Müller F; Mayhew SG; van den Berg WA; Moonen CT; Bacher A Biochemistry; 1986 Nov; 25(22):6789-99. PubMed ID: 3801391 [TBL] [Abstract][Full Text] [Related]
7. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants. O'Farrell PA; Walsh MA; McCarthy AA; Higgins TM; Voordouw G; Mayhew SG Biochemistry; 1998 Jun; 37(23):8405-16. PubMed ID: 9622492 [TBL] [Abstract][Full Text] [Related]
8. Structural and dynamic information on the complex of Megasphaera elsdenii apoflavodoxin and riboflavin 5'-phosphate. A phosphorus-31 nuclear magnetic resonance study. Moonen CT; Müller F Biochemistry; 1982 Jan; 21(2):408-14. PubMed ID: 7074025 [TBL] [Abstract][Full Text] [Related]
9. Flavodoxin from Anabaena 7120: uniform nitrogen-15 enrichment and hydrogen-1, nitrogen-15, and phosphorus-31 NMR investigations of the flavin mononucleotide binding site in the reduced and oxidized states. Stockman BJ; Westler WM; Mooberry ES; Markley JL Biochemistry; 1988 Jan; 27(1):136-42. PubMed ID: 3126808 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the hydrogen bonding interactions and their effects on the oxidation-reduction potentials for the riboflavin complex of the Desulfovibrio vulgaris flavodoxin. Chang F; Bradley LH; Swenson RP Biochim Biophys Acta; 2001 Apr; 1504(2-3):319-28. PubMed ID: 11245795 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen-1, carbon-13, and nitrogen-15 NMR spectroscopy of Anabaena 7120 flavodoxin: assignment of beta-sheet and flavin binding site resonances and analysis of protein-flavin interactions. Stockman BJ; Krezel AM; Markley JL; Leonhardt KG; Straus NA Biochemistry; 1990 Oct; 29(41):9600-9. PubMed ID: 2125478 [TBL] [Abstract][Full Text] [Related]
13. Nuclear magnetic resonance studies of the old yellow enzyme. 1. 15N NMR of the enzyme recombined with 15N-labeled flavin mononucleotides. Beinert WD; Rüterjans H; Müller F Eur J Biochem; 1985 Nov; 152(3):573-9. PubMed ID: 4054123 [TBL] [Abstract][Full Text] [Related]
14. Time-resolved fluorescence studies of flavodoxin. Fluorescence decay and fluorescence anisotropy decay of tryptophan in Desulfovibrio flavodoxins. Leenders HR; Vervoort J; van Hoek A; Visser AJ Eur Biophys J; 1990; 18(1):43-55. PubMed ID: 2307144 [TBL] [Abstract][Full Text] [Related]
15. Nuclear magnetic resonance studies of the old yellow enzyme. 2. 13C NMR of the enzyme recombined with 13C-labeled flavin mononucleotides. Beinert WD; Rüterjans H; Müller F; Bacher A Eur J Biochem; 1985 Nov; 152(3):581-7. PubMed ID: 4054124 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of oxidized flavodoxin from a red alga Chondrus crispus refined at 1.8 A resolution. Description of the flavin mononucleotide binding site. Fukuyama K; Matsubara H; Rogers LJ J Mol Biol; 1992 Jun; 225(3):775-89. PubMed ID: 1602481 [TBL] [Abstract][Full Text] [Related]
17. 15N- and 13C-NMR investigations of glucose oxidase from Aspergillus niger. Sanner C; Macheroux P; Rüterjans H; Müller F; Bacher A Eur J Biochem; 1991 Mar; 196(3):663-72. PubMed ID: 2013289 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 1. Kinetic evidence for cooperative effects associated with the binding of inorganic phosphate and the 5'-phosphate moiety of the cofactor. Murray TA; Swenson RP Biochemistry; 2003 Mar; 42(8):2307-16. PubMed ID: 12600198 [TBL] [Abstract][Full Text] [Related]
19. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin. McCarthy AA; Walsh MA; Verma CS; O'Connell DP; Reinhold M; Yalloway GN; D'Arcy D; Higgins TM; Voordouw G; Mayhew SG Biochemistry; 2002 Sep; 41(36):10950-62. PubMed ID: 12206666 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites. Murray TA; Foster MP; Swenson RP Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]