These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4029273)

  • 1. Polysaccharides sulfated at the time of gastrulation in embryos of the sea urchin Clypeaster japonicus.
    Yamaguchi M; Kinoshita S
    Exp Cell Res; 1985 Aug; 159(2):353-65. PubMed ID: 4029273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dermatan sulfate formation in gastrulae of the sea urchin Clypeaster japonicus.
    Yamaguchi M; Kinoshita S; Suzuki N
    J Biochem; 1989 Jul; 106(1):158-62. PubMed ID: 2777747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryos of the sea urchin Strongylocentrotus purpuratus synthesize a dermatan sulfate enriched in 4-O- and 6-O-disulfated galactosamine units.
    Vilela-Silva AC; Werneck CC; Valente AP; Vacquier VD; Mourão PA
    Glycobiology; 2001 Jun; 11(6):433-40. PubMed ID: 11445548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of mitogen activated protein kinase signaling affects gastrulation and spiculogenesis in the sea urchin embryo.
    Kumano M; Foltz KR
    Dev Growth Differ; 2003; 45(5-6):527-42. PubMed ID: 14706077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel class of adhesion acidic glycans in sea urchin embryos. Isolation, characterization and immunological studies during early embryonal development.
    Papakonstantinou E; Karakiulakis G; Aletras AJ; Misevic GN
    Eur J Biochem; 1994 Sep; 224(3):1067-77. PubMed ID: 7523117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfated polysaccharides and cell differentiation in the sea urchin embryo.
    Løvtrup-Rein H; Løvtrup S
    Exp Cell Biol; 1984; 52(6):383-8. PubMed ID: 6238860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of cell migration in sea urchin embryos by beta-D-xyloside.
    Solursh M; Mitchell SL; Katow H
    Dev Biol; 1986 Dec; 118(2):325-32. PubMed ID: 3098594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of spicule elongation in sea urchin embryos by the acetylcholinesterase inhibitor eserine.
    Ohta K; Takahashi C; Tosuji H
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Aug; 153(4):310-6. PubMed ID: 19383547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degeneration of archenteron in sea urchin embryos caused by alpha,alpha'-dipyridyl.
    Mizoguchi H; Fujiwara A; Yasumasu I
    Differentiation; 1983; 25(2):106-12. PubMed ID: 6662288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sea urchin arylsulfatase, an extracellular matrix component, is involved in gastrulation during embryogenesis.
    Mitsunaga-Nakatsubo K; Akimoto Y; Kawakami H; Akasaka K
    Dev Genes Evol; 2009 Jun; 219(6):281-8. PubMed ID: 19458963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [3H]serotonin binding to blastula, gastrula, prism, and pluteus sea urchin embryo cells.
    Brown KM; Shaver JR
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 93(2):281-5. PubMed ID: 2572382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and characterization of blastocoelic extracellular matrix antigens in early sea urchin embryos and evidence for their proteolytic modification during gastrulation.
    Vafa O; Goetzl L; Poccia D; Nishioka D
    Differentiation; 1996 Jun; 60(3):129-38. PubMed ID: 8766593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfated glycan present in the EDTA extract of Hemicentrotus embryos (mid-gastrula).
    Akasaka K; Terayama H
    Exp Cell Res; 1983 Jun; 146(1):177-85. PubMed ID: 6407855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STUDIES ON THE POLYSACCHARIDE-SULFATING SYSTEM IN SEA URCHIN EMBRYOS: II. NATURE OF SULFATED MATERIALS PRODUCED IN A CELL-FREE SYSTEM*
    Saotome K; Yanagisawa T
    Dev Growth Differ; 1979; 21(5):413-421. PubMed ID: 37281466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos.
    Takata H; Kominami T
    Zoolog Sci; 2004 Oct; 21(10):1025-35. PubMed ID: 15514472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of microinjection: delivering monoclonal antibody 1223 into sea urchin embryos.
    Cho JW
    Mol Cells; 1999 Aug; 9(4):455-8. PubMed ID: 10515613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A micronucleus assay in sea urchin embryos.
    Saotome K; Sofuni T; Hayashi M
    Mutat Res; 1999 Oct; 446(1):121-7. PubMed ID: 10613192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the synthesis and intracellular localization of nuclear proteins during embryogenesis in the sea urchin Strongylocentrotus purpuratus.
    Servetnick MD; Wilt FH
    Dev Biol; 1987 Sep; 123(1):231-44. PubMed ID: 3622930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin proteins from normal, vegetalized, and animalized sea urchin embryos.
    Gineitis AA; Stankeviciute JV; Vorob'ev VI
    Dev Biol; 1976 Sep; 52(2):181-92. PubMed ID: 12194431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo.
    Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR
    Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.