These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 402932)

  • 1. Study of the triplet state properties of tyrosines and tryptophan in azuring using optically detected magnetic resonance.
    Ugurbil K; Maki AH; Bersohn R
    Biochemistry; 1977 Mar; 16(5):901-7. PubMed ID: 402932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine emission in the tryptophanless azurin from Pseudomonas fluorescens.
    Ugurbil K; Bersohn R
    Biochemistry; 1977 Mar; 16(5):895-901. PubMed ID: 402931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplet state of tryptophan in proteins: the nature of the optically detected magnetic resonance lines.
    Rousslang KW; Ross JB; Deranleau DA; Kwiram AL
    Biochemistry; 1978 Mar; 17(6):1087-92. PubMed ID: 629948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy.
    Ugurbil K; Norton RS; Allerhand A; Bersohn R
    Biochemistry; 1977 Mar; 16(5):886-94. PubMed ID: 14666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triplet state of tryptophan in proteins. 2. Differentiation between tryptophan residues 62 and 108 in lysozyme.
    Rousslang KW; Thomasson JM; Rose JB; Kwiram AL
    Biochemistry; 1979 May; 18(11):2296-300. PubMed ID: 444457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorescence and optically detected magnetic resonance study of the tryptophan residue in human serum albumin.
    Bell KL; Brenner HC
    Biochemistry; 1982 Feb; 21(4):799-804. PubMed ID: 7074042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fine structure of luminescence spectra of azurin.
    Burstein EA; Permyakov EA; Yashin VA; Burkhanov SA; Finazzi Agro A
    Biochim Biophys Acta; 1977 Mar; 491(1):155-9. PubMed ID: 402948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorescence and optically detected magnetic resonance studies of echinomycin-DNA complexes.
    Alfredson TV; Maki AH
    Biochemistry; 1990 Sep; 29(38):9052-64. PubMed ID: 2271577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization.
    Grinvald A; Schlessinger J; Pecht I; Steinberg IZ
    Biochemistry; 1975 May; 14(9):1921-29. PubMed ID: 235970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic comparison of photogenerated tryptophan radicals in azurin: effects of local environment and structure.
    Shafaat HS; Leigh BS; Tauber MJ; Kim JE
    J Am Chem Soc; 2010 Jul; 132(26):9030-9. PubMed ID: 20536238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorescence/microwave double-resonance spectra of tryptophan perturbed by methylmercury(II).
    Davis JM; Maki AH
    Proc Natl Acad Sci U S A; 1982 Jul; 79(14):4313-6. PubMed ID: 6956860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The environment of the tryptophan residue in Pseudomonas aeruginosa azurin and its fluorescence properties.
    Turoverov KK; Kuznetsova IM; Zaitsev VN
    Biophys Chem; 1985 Nov; 23(1-2):79-89. PubMed ID: 3937558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical detection of triplet-state magnetic resonance studies on individual tryptophan residues of serum albumin: correlation between phosphorescence and zero-field splittings.
    Mao SY; Maki AH
    Biochemistry; 1987 Jun; 26(11):3106-14. PubMed ID: 3607014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photophysics of metalloazurins.
    Hansen JE; Longworth JW; Fleming GR
    Biochemistry; 1990 Aug; 29(31):7329-38. PubMed ID: 2119804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative investigation of snake venom neurotoxins and their triplet-state tryptophan-disulfide interactions using phosphorescence and optically detected magnetic resonance.
    Schlyer BD; Lau E; Maki AH
    Biochemistry; 1992 May; 31(18):4375-83. PubMed ID: 1581293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nucleic acid binding on the triplet state properties of tetrapeptides containing tryptophan and 6-methyltryptophan: a study by phosphorescence and ODMR spectroscopy.
    Misra A; Ozarowski A; Casas-Finet JR; Maki AH
    Biochemistry; 2000 Nov; 39(45):13772-80. PubMed ID: 11076516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature phosphorescence from azurin derivatives. Phosphorescence quenching in oxidized native azurin.
    Klemens FK; McMillin DR
    Photochem Photobiol; 1992 May; 55(5):671-6. PubMed ID: 1528979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational heterogeneity of the copper binding site in azurin. A time-resolved fluorescence study.
    Szabo AG; Stepanik TM; Wayner DM; Young NM
    Biophys J; 1983 Mar; 41(3):233-44. PubMed ID: 6404322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the tryptophan residues of Escherechia coli alkaline phosphatase by phosphorescence and optically detected magnetic resonance spectroscopy.
    Ghosh S; Misra A; Ozarowski A; Stuart C; Maki AH
    Biochemistry; 2001 Dec; 40(49):15024-30. PubMed ID: 11732924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the protein environment on the spectral properties of tryptophan radicals in Pseudomonas aeruginosa azurin.
    Bernini C; AndruniĆ³w T; Olivucci M; Pogni R; Basosi R; Sinicropi A
    J Am Chem Soc; 2013 Mar; 135(12):4822-33. PubMed ID: 23458492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.