These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 402948)

  • 1. The fine structure of luminescence spectra of azurin.
    Burstein EA; Permyakov EA; Yashin VA; Burkhanov SA; Finazzi Agro A
    Biochim Biophys Acta; 1977 Mar; 491(1):155-9. PubMed ID: 402948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysics of metalloazurins.
    Hansen JE; Longworth JW; Fleming GR
    Biochemistry; 1990 Aug; 29(31):7329-38. PubMed ID: 2119804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine emission in the tryptophanless azurin from Pseudomonas fluorescens.
    Ugurbil K; Bersohn R
    Biochemistry; 1977 Mar; 16(5):895-901. PubMed ID: 402931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the protein environment on the spectral properties of tryptophan radicals in Pseudomonas aeruginosa azurin.
    Bernini C; Andruniów T; Olivucci M; Pogni R; Basosi R; Sinicropi A
    J Am Chem Soc; 2013 Mar; 135(12):4822-33. PubMed ID: 23458492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational properties of azurin in solution as determined from resolution-enhanced Fourier-transform infrared spectra.
    Surewicz WK; Szabo AG; Mantsch HH
    Eur J Biochem; 1987 Sep; 167(3):519-23. PubMed ID: 3115776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational heterogeneity of the copper binding site in azurin. A time-resolved fluorescence study.
    Szabo AG; Stepanik TM; Wayner DM; Young NM
    Biophys J; 1983 Mar; 41(3):233-44. PubMed ID: 6404322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The environment of the tryptophan residue in Pseudomonas aeruginosa azurin and its fluorescence properties.
    Turoverov KK; Kuznetsova IM; Zaitsev VN
    Biophys Chem; 1985 Nov; 23(1-2):79-89. PubMed ID: 3937558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the triplet state properties of tyrosines and tryptophan in azuring using optically detected magnetic resonance.
    Ugurbil K; Maki AH; Bersohn R
    Biochemistry; 1977 Mar; 16(5):901-7. PubMed ID: 402932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization.
    Grinvald A; Schlessinger J; Pecht I; Steinberg IZ
    Biochemistry; 1975 May; 14(9):1921-29. PubMed ID: 235970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in transhydrogenase change the fluorescence emission state of TRP72 from 1La to 1Lb.
    Tveen Jensen K; Strambini G; Gonnelli M; Broos J; Jackson JB
    Biophys J; 2008 Oct; 95(7):3419-28. PubMed ID: 18599622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence.
    Hansen JE; Steel DG; Gafni A
    Biophys J; 1996 Oct; 71(4):2138-43. PubMed ID: 8889189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique environment of Trp48 in Pseudomonas aeruginosa azurin as probed by site-directed mutagenesis and dynamic fluorescence spectroscopy.
    Gilardi G; Mei G; Rosato N; Canters GW; Finazzi-Agrò A
    Biochemistry; 1994 Feb; 33(6):1425-32. PubMed ID: 8312262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the time-resolved absorption and phosphorescence from the tryptophan triplet state in proteins in solution.
    Gershenson A; Gafni A; Steel D
    Photochem Photobiol; 1998 Apr; 67(4):391-8. PubMed ID: 9559583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and pressure dependence of azurin stability as monitored by tryptophan fluorescence and phosphorescence. The case of F29A mutant.
    Tognotti D; Gabellieri E; Morelli E; Cioni P
    Biophys Chem; 2013 Dec; 182():44-50. PubMed ID: 23816248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of conformation transitions in proteins by tryptophan fluorescence and phosphorescence at low temperatures].
    Permiakov EA; Deĭkus GIu
    Mol Biol (Mosk); 1995; 29(2):339-44. PubMed ID: 7783738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does azurin bind to the transactivation domain of p53? A Trp phosphorescence study.
    Gabellieri E; Bucciantini M; Stefani M; Cioni P
    Biophys Chem; 2011 Dec; 159(2-3):287-93. PubMed ID: 21885181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic comparison of photogenerated tryptophan radicals in azurin: effects of local environment and structure.
    Shafaat HS; Leigh BS; Tauber MJ; Kim JE
    J Am Chem Soc; 2010 Jul; 132(26):9030-9. PubMed ID: 20536238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A time-resolved fluorescence study of azurin and metalloazurin derivatives.
    Hutnik CM; Szabo AG
    Biochemistry; 1989 May; 28(9):3935-9. PubMed ID: 2502173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-temperature phosphorescence from azurin derivatives. Phosphorescence quenching in oxidized native azurin.
    Klemens FK; McMillin DR
    Photochem Photobiol; 1992 May; 55(5):671-6. PubMed ID: 1528979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.