BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4029496)

  • 1. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy.
    Radda GK; Taylor DJ; Arnold DL
    Biochem Soc Trans; 1985 Aug; 13(4):654. PubMed ID: 4029496
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy.
    Arnold DL; Taylor DJ; Radda GK
    Ann Neurol; 1985 Aug; 18(2):189-96. PubMed ID: 4037759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study.
    Argov Z; Bank WJ; Maris J; Peterson P; Chance B
    Neurology; 1987 Feb; 37(2):257-62. PubMed ID: 3808305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cytosolic pH on in vivo assessment of human muscle mitochondrial respiration by phosphorus magnetic resonance spectroscopy.
    Lodi R; Kemp GJ; Iotti S; Radda GK; Barbiroli B
    MAGMA; 1997 Jun; 5(2):165-71. PubMed ID: 9268081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of a myopathy by phosphorus nuclear magnetic resonance.
    Gadian D; Radda G; Ross B; Hockaday J; Bore P; Taylor D; Styles P
    Lancet; 1981 Oct; 2(8250):774-5. PubMed ID: 6116904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial respiration in creatine-loaded muscle: is there 31P-MRS evidence of direct effects of phosphocreatine and creatine in vivo?
    Kemp G
    J Appl Physiol (1985); 2006 Apr; 100(4):1428-9; author reply 1429-30. PubMed ID: 16540719
    [No Abstract]   [Full Text] [Related]  

  • 7. In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease.
    Matthews PM; Allaire C; Shoubridge EA; Karpati G; Carpenter S; Arnold DL
    Neurology; 1991 Jan; 41(1):114-20. PubMed ID: 1985275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of 31P n.m.r. to inborn errors of muscle metabolism.
    Ross BD; Radda GK
    Biochem Soc Trans; 1983 Dec; 11(6):627-30. PubMed ID: 6583132
    [No Abstract]   [Full Text] [Related]  

  • 9. A mitochondrial encephalomyopathy. A combined 31P magnetic resonance and biochemical investigation.
    Hayes DJ; Hilton-Jones D; Arnold DL; Galloway G; Styles P; Duncan J; Radda GK
    J Neurol Sci; 1985 Nov; 71(1):105-18. PubMed ID: 4087016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical use of nuclear magnetic resonance in the investigation of myopathy.
    Edwards RH; Dawson MJ; Wilkie DR; Gordon RE; Shaw D
    Lancet; 1982 Mar; 1(8274):725-31. PubMed ID: 6122019
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for mitochondrial dysfunction in patients with alternating hemiplegia of childhood.
    Arnold DL; Silver K; Andermann F
    Ann Neurol; 1993 Jun; 33(6):604-7. PubMed ID: 8498840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function.
    Chance B; Leigh JS; Clark BJ; Maris J; Kent J; Nioka S; Smith D
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8384-8. PubMed ID: 3866229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal in vivo skeletal muscle oxidative metabolism in sporadic inclusion body myositis assessed by 31P-magnetic resonance spectroscopy.
    Lodi R; Taylor DJ; Tabrizi SJ; Hilton-Jones D; Squier MV; Seller A; Styles P; Schapira AH
    Brain; 1998 Nov; 121 ( Pt 11)():2119-26. PubMed ID: 9827771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion.
    Smith SA; Montain SJ; Zientara GP; Fielding RA
    J Appl Physiol (1985); 2004 Jun; 96(6):2288-92. PubMed ID: 14978006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Muscular energetics studied by nuclear magnetic resonance spectroscopy of phosphorus (cardiac and skeletal muscles)].
    Rossi A
    Arch Int Physiol Biochim; 1988 Sep; 96(4):A393-409. PubMed ID: 2463818
    [No Abstract]   [Full Text] [Related]  

  • 18. 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle.
    Chance B; Eleff S; Bank W; Leigh JS; Warnell R
    Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7714-8. PubMed ID: 6218501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topical magnetic resonance for the study of muscle metabolism in human myopathy.
    Edwards RH; Griffiths RD; Cady EB
    Clin Physiol; 1985 Apr; 5(2):93-109. PubMed ID: 3995881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus magnetic resonance spectroscopy of partially blocked muscle glycolysis. An in vivo study of phosphoglycerate mutase deficiency.
    Argov Z; Bank WJ; Boden B; Ro YI; Chance B
    Arch Neurol; 1987 Jun; 44(6):614-7. PubMed ID: 3034220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.