These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4030434)

  • 1. Comparative theoretical performance for two types of regional hyperthermia systems.
    Paulsen KD; Strohbehn JW; Lynch DR
    Int J Radiat Oncol Biol Phys; 1985 Sep; 11(9):1659-71. PubMed ID: 4030434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical temperature distributions produced by an annular phased array-type system in CT-based patient models.
    Paulsen KD; Strohbehn JW; Lynch DR
    Radiat Res; 1984 Dec; 100(3):536-52. PubMed ID: 6505143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the absorbed power distribution for an annular phased array hyperthermia system.
    Strohbehn JW; Curtis EH; Paulsen KD; Yuan XC; Lynch DR
    Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):589-99. PubMed ID: 2921161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of absorbed power in tissue for various hyperthermia devices.
    Strohbehn JW
    Cancer Res; 1984 Oct; 44(10 Suppl):4781s-4787s. PubMed ID: 6467230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep regional hyperthermia: comparison between the annular phased array and the sigma-60 applicator in the same patients.
    Feldmann HJ; Molls M; Krümplemann S; Stuschke M; Sack H
    Int J Radiat Oncol Biol Phys; 1993 Apr; 26(1):111-6. PubMed ID: 8482617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heating deep seated eccentrically located tumors with an annular phased array system: a comparative clinical study using two annular array operating configurations.
    Samulski TV; Kapp DS; Fessenden P; Lohrbach A
    Int J Radiat Oncol Biol Phys; 1987 Jan; 13(1):83-94. PubMed ID: 3804820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAR optimization in a phased array radiofrequency hyperthermia system. Specific absorption rate.
    Bardati F; Borrani A; Gerardino A; Lovisolo GA
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1201-7. PubMed ID: 8550062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical temperature profiles for concentric coil induction heating devices in a two-dimensional, axi-asymmetric, inhomogeneous patient model.
    Paulsen KD; Strohbehn JW; Hill SC; Lynch DR; Kennedy FE
    Int J Radiat Oncol Biol Phys; 1984 Jul; 10(7):1095-107. PubMed ID: 6746351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic phased arrays for regional hyperthermia: optimal frequency and antenna arrangement.
    Seebass M; Beck R; Gellermann J; Nadobny J; Wust P
    Int J Hyperthermia; 2001; 17(4):321-36. PubMed ID: 11471983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional power deposition for hyperthermia: theoretical approaches and considerations.
    Oleson JR
    Cancer Res; 1984 Oct; 44(10 Suppl):4761s-4764s. PubMed ID: 6467229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniform regional heating of the lower trunk: numerical evaluation of tumor temperature distributions.
    Halac S; Roemer RB; Oleson JR; Cetas TC
    Int J Radiat Oncol Biol Phys; 1983 Dec; 9(12):1833-40. PubMed ID: 6662751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of deep regional hyperthermia from an annular array and a concentric coil in the same patients.
    Sapozink MD; Gibbs FA; Thomson JW; Eltringham JR; Stewart JR
    Int J Radiat Oncol Biol Phys; 1985 Jan; 11(1):179-90. PubMed ID: 3967985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of H-Horn annular phased array system for heating deep-seated tumors.
    Tianquan D; Zheng L; Wei R
    J Microw Power Electromagn Energy; 1991; 26(2):100-6. PubMed ID: 1890566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CDRH helix. A phase I clinical trial.
    Shimm DS; Cetas TC; Hynynen KH; Buechler DN; Anhalt DP; Sykes HF; Cassady JR
    Am J Clin Oncol; 1989 Apr; 12(2):110-3. PubMed ID: 2705399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence.
    Arunachalam K; Maccarini PF; Craciunescu OI; Schlorff JL; Stauffer PR
    Phys Med Biol; 2010 Apr; 55(7):1949-69. PubMed ID: 20224154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional hyperthermia: a clinical appraisal of noninvasive deep-heating methods.
    Gibbs FA
    Cancer Res; 1984 Oct; 44(10 Suppl):4765s-4770s. PubMed ID: 6380714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comments on "Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors".
    Hagmann MJ
    IEEE Trans Biomed Eng; 1992 Dec; 39(12):1322-4. PubMed ID: 1487298
    [No Abstract]   [Full Text] [Related]  

  • 18. Treatment planning for capacitive regional hyperthermia.
    Kroeze H; van de Kamer JB; de Leeuw AA; Kikuchi M; Lagendijk JJ
    Int J Hyperthermia; 2003; 19(1):58-73. PubMed ID: 12519712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical model for RF capacitive regional deep hyperthermia in pelvic tumors.
    D'Ambrosio V; Dughiero F
    Med Biol Eng Comput; 2007 May; 45(5):459-66. PubMed ID: 17372778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase I evaluation of hyperthermia equipment--University of Utah institutional report.
    Sapozink MD; Gibbs FA; Gibbs P; Stewart JR
    Int J Hyperthermia; 1988; 4(1):117-32. PubMed ID: 3346581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.