These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4030526)

  • 1. The rumen microbiology of seaweed digestion in Orkney sheep.
    Orpin CG; Greenwood Y; Hall FJ; Paterson IW
    J Appl Bacteriol; 1985 Jun; 58(6):585-96. PubMed ID: 4030526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep.
    Min BR; Attwood GT; Reilly K; Sun W; Peters JS; Barry TN; McNabb WC
    Can J Microbiol; 2002 Oct; 48(10):911-21. PubMed ID: 12489781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur.
    Akin DE; Gordon GL; Hogan JP
    Appl Environ Microbiol; 1983 Sep; 46(3):738-48. PubMed ID: 6639027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets.
    Zhou YW; McSweeney CS; Wang JK; Liu JX
    Animal; 2012 May; 6(5):815-23. PubMed ID: 22558929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of microbial synergism on fibre digestion in the rumen.
    Dehority BA
    Proc Nutr Soc; 1991 Aug; 50(2):149-59. PubMed ID: 1661009
    [No Abstract]   [Full Text] [Related]  

  • 6. Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows.
    Rico DE; Preston SH; Risser JM; Harvatine KJ
    Br J Nutr; 2015 Aug; 114(3):358-67. PubMed ID: 26123320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of protozoa on bacterial nitrogen recycling in the rumen.
    Koenig KM; Newbold CJ; McIntosh FM; Rode LM
    J Anim Sci; 2000 Sep; 78(9):2431-45. PubMed ID: 10985419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes.
    Buccioni A; Pauselli M; Viti C; Minieri S; Pallara G; Roscini V; Rapaccini S; Marinucci MT; Lupi P; Conte G; Mele M
    J Dairy Sci; 2015 Feb; 98(2):1145-56. PubMed ID: 25434333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defined bacterial populations in the rumens of gnotobiotic lambs.
    Lysons RJ; Alexander TJ; Wellstead PD; Hobson PN; Mann SO; Stewart CS
    J Gen Microbiol; 1976 Jun; 94(2):257-69. PubMed ID: 950552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DAP-decarboxylase activity and lysine production by rumen bacteria.
    Styriak I; Timashova-Kalcheva EO; Kmeí V; Maljuta SS
    Arch Tierernahr; 1992; 42(1):71-7. PubMed ID: 1295484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of extracellular lactate on growth of rumen lactate producers.
    Simunek J; Marounek M
    Arch Tierernahr; 1994; 46(3):277-81. PubMed ID: 7619002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of ciliate protozoa in the lysis of methanogenic archaea in rumen fluid.
    Newbold CJ; Ushida K; Morvan B; Fonty G; Jouany JP
    Lett Appl Microbiol; 1996 Dec; 23(6):421-5. PubMed ID: 8987902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion.
    Sawanon S; Koike S; Kobayashi Y
    FEMS Microbiol Lett; 2011 Dec; 325(2):170-9. PubMed ID: 22092507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.
    Asanuma N; Yokoyama S; Hino T
    Anim Sci J; 2015 Apr; 86(4):378-84. PubMed ID: 25439583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of ruminococcus and cellulolytic butyrivibrio species from the rumens of sheep fed differently supplemented teff (Eragrostis tef) hay diets.
    Van Gylswyk NO; Roché CE
    J Gen Microbiol; 1970 Nov; 64(1):11-7. PubMed ID: 5516604
    [No Abstract]   [Full Text] [Related]  

  • 16. The use of PCR for the identification and characterisation of bacteriocin genes from bacterial strains isolated from rumen or caecal contents of cattle and sheep.
    Cookson AL; Noel SJ; Kelly WJ; Attwood GT
    FEMS Microbiol Ecol; 2004 May; 48(2):199-207. PubMed ID: 19712403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose.
    Dehority BA; Tirabasso PA
    J Anim Sci; 1998 Nov; 76(11):2905-11. PubMed ID: 9856401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.
    Patterson JA; Ricke SC
    J Environ Sci Health B; 2015; 50(1):62-7. PubMed ID: 25421629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruminal fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna.
    Ivan M; Neill L; Entz T
    J Anim Sci; 2000 Mar; 78(3):750-9. PubMed ID: 10764084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial and animal limitations to fiber digestion and utilization.
    Varga GA; Kolver ES
    J Nutr; 1997 May; 127(5 Suppl):819S-823S. PubMed ID: 9164244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.