BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 4030749)

  • 1. Effect of dinitrophenyl modification on oxidation-reduction of glutathione reductase from yeast.
    Maeda-Yorita K; Aki K
    J Biochem; 1985 Jun; 97(6):1795-801. PubMed ID: 4030749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of active site tyrosine residues in catalysis by human glutathione reductase.
    Krauth-Siegel RL; Arscott LD; Schönleben-Janas A; Schirmer RH; Williams CH
    Biochemistry; 1998 Oct; 37(40):13968-77. PubMed ID: 9760231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.
    Picaud T; Desbois A
    Biochemistry; 2006 Dec; 45(51):15829-37. PubMed ID: 17176105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox interconversion mechanism of Saccharomyces cerevisiae glutathione reductase.
    Pinto MC; Mata AM; López-Barea J
    Eur J Biochem; 1985 Sep; 151(2):275-81. PubMed ID: 3896786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of 2,4,6-trinitrobenzenesulfonate by glutathione reductase and the effect of NADP+ on the electron transfer.
    Carlberg I; Mannervik B
    J Biol Chem; 1986 Feb; 261(4):1629-35. PubMed ID: 3003077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase.
    Carlberg I; Sahlman L; Mannervik B
    FEBS Lett; 1985 Jan; 180(1):102-6. PubMed ID: 3917936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic studies of the reduction of yeast glutathione reductase by reduced nicotinamide hypoxanthine dinucleotide phosphate.
    Huber PW; Brandt KG
    Arch Biochem Biophys; 1985 Apr; 238(1):213-8. PubMed ID: 3885856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxide modification of monoalkylated glutathione reductase. Stabilization of an active-site cysteine-sulfenic acid.
    Miller H; Claiborne A
    J Biol Chem; 1991 Oct; 266(29):19342-50. PubMed ID: 1918050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The EH2 reduced intermediate of glutathione reductase contains oxidised flavin-while EH4 does not.
    Lively CR; McFarland JT
    Biochem Biophys Res Commun; 1986 Apr; 136(1):22-9. PubMed ID: 3707573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Nonphysiological redox-agents are reduced at the binding center of NADP(H) glutathione reductase].
    Bironaĭte DA; Chenas NK; Kulis IuIu
    Biokhimiia; 1992 Aug; 57(8):1192-5. PubMed ID: 1391223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional activities of yeast glutathione reductase.
    Tsai CS; Godin JR
    Int J Biochem; 1987; 19(4):337-43. PubMed ID: 3297844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis.
    Veine DM; Arscott LD; Williams CH
    Biochemistry; 1998 Nov; 37(44):15575-82. PubMed ID: 9799522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation-reactivation of two-electron reduced Escherichia coli glutathione reductase involving a dimer-monomer equilibrium.
    Arscott LD; Drake DM; Williams CH
    Biochemistry; 1989 Apr; 28(8):3591-8. PubMed ID: 2663073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse-liver glutathione reductase. Purification, kinetics, and regulation.
    López-Barea J; Lee CY
    Eur J Biochem; 1979 Aug; 98(2):487-99. PubMed ID: 39757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase.
    Deponte M; Urig S; Arscott LD; Fritz-Wolf K; Réau R; Herold-Mende C; Koncarevic S; Meyer M; Davioud-Charvet E; Ballou DP; Williams CH; Becker K
    J Biol Chem; 2005 May; 280(21):20628-37. PubMed ID: 15792952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of milk xanthine oxidase by fluorodinitrobenzene.
    Nishino T; Tsushima K; Hille R; Massey V
    J Biol Chem; 1982 Jul; 257(13):7348-53. PubMed ID: 6806272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila.
    Cheng Z; Arscott LD; Ballou DP; Williams CH
    Biochemistry; 2007 Jul; 46(26):7875-85. PubMed ID: 17550271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonenzymic hydrogen transfer between reduced and oxidized pyridine nucleotides.
    Bernofsky C; Gallagher WJ
    Biochim Biophys Acta; 1981 May; 659(1):1-6. PubMed ID: 7248310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The relation of glutathione reductase and diaphorase activity of glutathione reductase from Saccharomyces cerevisiae].
    Chenas NK; Rakauskene GA; Kulis IuIu
    Biokhimiia; 1989 Jul; 54(7):1090-7. PubMed ID: 2679896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.