These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 4030749)

  • 1. Effect of dinitrophenyl modification on oxidation-reduction of glutathione reductase from yeast.
    Maeda-Yorita K; Aki K
    J Biochem; 1985 Jun; 97(6):1795-801. PubMed ID: 4030749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of active site tyrosine residues in catalysis by human glutathione reductase.
    Krauth-Siegel RL; Arscott LD; Schönleben-Janas A; Schirmer RH; Williams CH
    Biochemistry; 1998 Oct; 37(40):13968-77. PubMed ID: 9760231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.
    Picaud T; Desbois A
    Biochemistry; 2006 Dec; 45(51):15829-37. PubMed ID: 17176105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox interconversion mechanism of Saccharomyces cerevisiae glutathione reductase.
    Pinto MC; Mata AM; López-Barea J
    Eur J Biochem; 1985 Sep; 151(2):275-81. PubMed ID: 3896786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of 2,4,6-trinitrobenzenesulfonate by glutathione reductase and the effect of NADP+ on the electron transfer.
    Carlberg I; Mannervik B
    J Biol Chem; 1986 Feb; 261(4):1629-35. PubMed ID: 3003077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase.
    Carlberg I; Sahlman L; Mannervik B
    FEBS Lett; 1985 Jan; 180(1):102-6. PubMed ID: 3917936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic studies of the reduction of yeast glutathione reductase by reduced nicotinamide hypoxanthine dinucleotide phosphate.
    Huber PW; Brandt KG
    Arch Biochem Biophys; 1985 Apr; 238(1):213-8. PubMed ID: 3885856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxide modification of monoalkylated glutathione reductase. Stabilization of an active-site cysteine-sulfenic acid.
    Miller H; Claiborne A
    J Biol Chem; 1991 Oct; 266(29):19342-50. PubMed ID: 1918050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The EH2 reduced intermediate of glutathione reductase contains oxidised flavin-while EH4 does not.
    Lively CR; McFarland JT
    Biochem Biophys Res Commun; 1986 Apr; 136(1):22-9. PubMed ID: 3707573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Nonphysiological redox-agents are reduced at the binding center of NADP(H) glutathione reductase].
    Bironaĭte DA; Chenas NK; Kulis IuIu
    Biokhimiia; 1992 Aug; 57(8):1192-5. PubMed ID: 1391223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional activities of yeast glutathione reductase.
    Tsai CS; Godin JR
    Int J Biochem; 1987; 19(4):337-43. PubMed ID: 3297844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis.
    Veine DM; Arscott LD; Williams CH
    Biochemistry; 1998 Nov; 37(44):15575-82. PubMed ID: 9799522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation-reactivation of two-electron reduced Escherichia coli glutathione reductase involving a dimer-monomer equilibrium.
    Arscott LD; Drake DM; Williams CH
    Biochemistry; 1989 Apr; 28(8):3591-8. PubMed ID: 2663073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse-liver glutathione reductase. Purification, kinetics, and regulation.
    López-Barea J; Lee CY
    Eur J Biochem; 1979 Aug; 98(2):487-99. PubMed ID: 39757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase.
    Deponte M; Urig S; Arscott LD; Fritz-Wolf K; Réau R; Herold-Mende C; Koncarevic S; Meyer M; Davioud-Charvet E; Ballou DP; Williams CH; Becker K
    J Biol Chem; 2005 May; 280(21):20628-37. PubMed ID: 15792952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of milk xanthine oxidase by fluorodinitrobenzene.
    Nishino T; Tsushima K; Hille R; Massey V
    J Biol Chem; 1982 Jul; 257(13):7348-53. PubMed ID: 6806272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila.
    Cheng Z; Arscott LD; Ballou DP; Williams CH
    Biochemistry; 2007 Jul; 46(26):7875-85. PubMed ID: 17550271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonenzymic hydrogen transfer between reduced and oxidized pyridine nucleotides.
    Bernofsky C; Gallagher WJ
    Biochim Biophys Acta; 1981 May; 659(1):1-6. PubMed ID: 7248310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The relation of glutathione reductase and diaphorase activity of glutathione reductase from Saccharomyces cerevisiae].
    Chenas NK; Rakauskene GA; Kulis IuIu
    Biokhimiia; 1989 Jul; 54(7):1090-7. PubMed ID: 2679896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.