These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 4030791)

  • 1. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro.
    Fisher RP; Clayton DA
    J Biol Chem; 1985 Sep; 260(20):11330-8. PubMed ID: 4030791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an RNA polymerase activity from HeLa cell mitochondria, which initiates transcription at the heavy strand rRNA promoter and the light strand promoter in human mitochondrial DNA.
    Shuey DJ; Attardi G
    J Biol Chem; 1985 Feb; 260(3):1952-8. PubMed ID: 2981880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise assignment of the heavy-strand promoter of mouse mitochondrial DNA: cognate start sites are not required for transcriptional initiation.
    Chang DD; Clayton DA
    Mol Cell Biol; 1986 Sep; 6(9):3262-7. PubMed ID: 3785226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of multiple rate-limiting steps during the human mitochondrial transcription cycle in vitro.
    Lodeiro MF; Uchida AU; Arnold JJ; Reynolds SL; Moustafa IM; Cameron CE
    J Biol Chem; 2010 May; 285(21):16387-402. PubMed ID: 20351113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multicomponent mitochondrial RNA polymerase from Saccharomyces cerevisiae.
    Winkley CS; Keller MJ; Jaehning JA
    J Biol Chem; 1985 Nov; 260(26):14214-23. PubMed ID: 3902826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements.
    Fisher RP; Topper JN; Clayton DA
    Cell; 1987 Jul; 50(2):247-58. PubMed ID: 3594571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro transcription of human mitochondrial DNA. Identification of specific light strand transcripts from the displacement loop region.
    Walberg MW; Clayton DA
    J Biol Chem; 1983 Jan; 258(2):1268-75. PubMed ID: 6571694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Basis of Mitochondrial Transcription Initiation.
    Hillen HS; Morozov YI; Sarfallah A; Temiakov D; Cramer P
    Cell; 2017 Nov; 171(5):1072-1081.e10. PubMed ID: 29149603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial transcription initiation: promoter structures and RNA polymerases.
    Tracy RL; Stern DB
    Curr Genet; 1995 Aug; 28(3):205-16. PubMed ID: 8529266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preference of human mitochondrial RNA polymerase for superhelical templates with mitochondrial promoters.
    Buzan JM; Low RL
    Biochem Biophys Res Commun; 1988 Apr; 152(1):22-9. PubMed ID: 3358762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the yeast mitochondrial RNA polymerase specificity factor, Mtf1, verify an essential role in promoter utilization.
    Karlok MA; Jang SH; Jaehning JA
    J Biol Chem; 2002 Aug; 277(31):28143-9. PubMed ID: 12021282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate in vitro transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters.
    Bogenhagen DF; Yoza BK
    Mol Cell Biol; 1986 Jul; 6(7):2543-50. PubMed ID: 3023938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional commitment of mitochondrial RNA polymerase from Saccharomyces cerevisiae.
    Biswas TK
    J Mol Biol; 1992 Jul; 226(2):335-47. PubMed ID: 1640454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a promoter for transcription of the heavy strand of human mtDNA: in vitro transcription and deletion mutagenesis.
    Bogenhagen DF; Applegate EF; Yoza BK
    Cell; 1984 Apr; 36(4):1105-13. PubMed ID: 6323020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of primary transcriptional start sites of mouse mitochondrial DNA: accurate in vitro initiation of both heavy- and light-strand transcripts.
    Chang DD; Clayton DA
    Mol Cell Biol; 1986 May; 6(5):1446-53. PubMed ID: 3785171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro.
    Litonin D; Sologub M; Shi Y; Savkina M; Anikin M; Falkenberg M; Gustafsson CM; Temiakov D
    J Biol Chem; 2010 Jun; 285(24):18129-33. PubMed ID: 20410300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II.
    Dynan WS; Tjian R
    Cell; 1983 Mar; 32(3):669-80. PubMed ID: 6187469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear gadgets in mitochondrial DNA replication and transcription.
    Clayton DA
    Trends Biochem Sci; 1991 Mar; 16(3):107-11. PubMed ID: 2057998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Mitochondrial Transcription Initiation Complexes Have Similar Topology on the Light and Heavy Strand Promoters.
    Morozov YI; Temiakov D
    J Biol Chem; 2016 Jun; 291(26):13432-5. PubMed ID: 27226527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D model of RNA polymerase and bidirectional transcription.
    Bhattacharya P
    Biochem Biophys Res Commun; 2007 Mar; 355(1):103-10. PubMed ID: 17288994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.