These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 4030805)

  • 1. Geometry and motion of the knee for implant and orthotic design.
    Kurosawa H; Walker PS; Abe S; Garg A; Hunter T
    J Biomech; 1985; 18(7):487-99. PubMed ID: 4030805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anteroposterior and rotational movement of femur during knee flexion.
    Todo S; Kadoya Y; Moilanen T; Kobayashi A; Yamano Y; Iwaki H; Freeman MA
    Clin Orthop Relat Res; 1999 May; (362):162-70. PubMed ID: 10335295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External knee joint design based on normal motion.
    Walker PS; Kurosawa H; Rovick JS; Zimmerman RA
    J Rehabil Res Dev; 1985 Jan; 22(1):9-22. PubMed ID: 4009509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo femoro-tibial kinematic analysis of a tri-condylar total knee prosthesis.
    Nakamura S; Sharma A; Ito H; Nakamura K; Komistek RD
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):400-5. PubMed ID: 24636308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New method of describing the motion of the knee joint].
    Kurosawa H; Walker PS
    Nihon Seikeigeka Gakkai Zasshi; 1983 Nov; 57(11):1729-40. PubMed ID: 6676390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion of the femoral condyles in flexion and extension during a continuous lunge.
    Feng Y; Tsai TY; Li JS; Wang S; Hu H; Zhang C; Rubash HE; Li G
    J Orthop Res; 2015 Apr; 33(4):591-7. PubMed ID: 25641056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty.
    Li G; Suggs J; Hanson G; Durbhakula S; Johnson T; Freiberg A
    J Bone Joint Surg Am; 2006 Feb; 88(2):395-402. PubMed ID: 16452753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional kinematics during deep-flexion kneeling in mobile-bearing total knee arthroplasty.
    Tanaka A; Nakamura E; Okamoto N; Banks SA; Mizuta H
    Knee; 2011 Dec; 18(6):412-6. PubMed ID: 20833548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA.
    Kia M; Wright TM; Cross MB; Mayman DJ; Pearle AD; Sculco PK; Westrich GH; Imhauser CW
    Clin Orthop Relat Res; 2018 Jan; 476(1):113-123. PubMed ID: 29529625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking anatomical condylar configuration into knee prosthesis could improve knee kinematics after TKA - a computational simulation.
    Liu YL; Chen WC; Yeh WL; McClean CJ; Huang CH; Lin KJ; Cheng CK
    Clin Biomech (Bristol, Avon); 2012 Feb; 27(2):176-81. PubMed ID: 21911272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal femoral component malrotation in TKA significantly alters tibiofemoral kinematics.
    Heyse TJ; El-Zayat BF; De Corte R; Chevalier Y; Fuchs-Winkelmann S; Labey L
    Knee Surg Sports Traumatol Arthrosc; 2018 Jun; 26(6):1767-1775. PubMed ID: 29128876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo kinematic effects of ball and socket third condyle as a post-cam mechanism in tri-condylar knee implants.
    Nakamura S; Sharma A; Nakamura K; Ikeda N; Kawai J; Zingde SM; Komistek RD
    Knee; 2015 Jun; 22(3):237-42. PubMed ID: 25835265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional tibiofemoral kinematics during deep flexion kneeling in a mobile-bearing total knee arthroplasty.
    Nakamura E; Banks SA; Tanaka A; Sei A; Mizuta H
    J Arthroplasty; 2009 Oct; 24(7):1120-4. PubMed ID: 18823746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: In-vivo surgical transepicondylar axis and geometric center axis analyses.
    Dimitriou D; Tsai TY; Park KK; Hosseini A; Kwon YM; Rubash HE; Li G
    J Biomech; 2016 Jun; 49(9):1891-1898. PubMed ID: 27166758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spatial mechanism with higher pairs for modelling the human knee joint.
    Di Gregorio R; Parenti-Castelli V
    J Biomech Eng; 2003 Apr; 125(2):232-7. PubMed ID: 12751285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knee kinematics in-vivo of kneeling in deep flexion examined by bi-planar radiographs.
    Hefzy MS; Kelly BP; Cooke TD; al-Baddah AM; Harrison L
    Biomed Sci Instrum; 1997; 33():453-8. PubMed ID: 9731402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sagittal flexion of the femoral component affects flexion gap and sizing in total knee arthroplasty.
    Tsukeoka T; Lee TH
    J Arthroplasty; 2012 Jun; 27(6):1094-9. PubMed ID: 22153951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the kinematics of total knee prostheses with a medial pivot design.
    Miyazaki Y; Nakamura T; Kogame K; Saito M; Yamamoto K; Suguro T
    J Arthroplasty; 2011 Oct; 26(7):1038-44. PubMed ID: 21144697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A one-degree-of-freedom spherical mechanism for human knee joint modelling.
    Sancisi N; Zannoli D; Parenti-Castelli V; Belvedere C; Leardini A
    Proc Inst Mech Eng H; 2011 Aug; 225(8):725-35. PubMed ID: 21922950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.