These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 4030869)

  • 1. The influence of induced micromovement upon the healing of experimental tibial fractures.
    Goodship AE; Kenwright J
    J Bone Joint Surg Br; 1985 Aug; 67(4):650-5. PubMed ID: 4030869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled mechanical stimulation in the treatment of tibial fractures.
    Kenwright J; Goodship AE
    Clin Orthop Relat Res; 1989 Apr; (241):36-47. PubMed ID: 2924478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain rate and timing of stimulation in mechanical modulation of fracture healing.
    Goodship AE; Cunningham JL; Kenwright J
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S105-15. PubMed ID: 9917631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tibial external fixation, weight bearing, and fracture movement.
    Kershaw CJ; Cunningham JL; Kenwright J
    Clin Orthop Relat Res; 1993 Aug; (293):28-36. PubMed ID: 8339493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of controlled axial micromovement on healing of tibial fractures.
    Kenwright J; Richardson JB; Goodship AE; Evans M; Kelly DJ; Spriggins AJ; Newman JH; Burrough SJ; Harris JD; Rowley DI
    Lancet; 1986 Nov; 2(8517):1185-7. PubMed ID: 2877327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial movement and tibial fractures. A controlled randomised trial of treatment.
    Kenwright J; Richardson JB; Cunningham JL; White SH; Goodship AE; Adams MA; Magnussen PA; Newman JH
    J Bone Joint Surg Br; 1991 Jul; 73(4):654-9. PubMed ID: 2071654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of callus healing for optimization of fracture fixation stiffness.
    Steiner M; Claes L; Ignatius A; Simon U; Wehner T
    PLoS One; 2014; 9(7):e101370. PubMed ID: 24991809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vascular response to fracture micromovement.
    Wallace AL; Draper ER; Strachan RK; McCarthy ID; Hughes SP
    Clin Orthop Relat Res; 1994 Apr; (301):281-90. PubMed ID: 8156689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The course of bone healing is influenced by the initial shear fixation stability.
    Schell H; Epari DR; Kassi JP; Bragulla H; Bail HJ; Duda GN
    J Orthop Res; 2005 Sep; 23(5):1022-8. PubMed ID: 15878254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical influences on tibial fracture healing.
    Kenwright J; Gardner T
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S179-90. PubMed ID: 9917638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results.
    Schell H; Thompson MS; Bail HJ; Hoffmann JE; Schill A; Duda GN; Lienau J
    J Biomech; 2008 Oct; 41(14):3066-72. PubMed ID: 18778822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of unreamed nailing and external fixation of tibial diastases--mechanical conditions during healing and biological outcome.
    Klein P; Opitz M; Schell H; Taylor WR; Heller MO; Kassi JP; Kandziora F; Duda GN
    J Orthop Res; 2004 Sep; 22(5):1072-8. PubMed ID: 15304281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear movement at the fracture site delays healing in a diaphyseal fracture model.
    Augat P; Burger J; Schorlemmer S; Henke T; Peraus M; Claes L
    J Orthop Res; 2003 Nov; 21(6):1011-7. PubMed ID: 14554213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method to determine the 3-D stiffness of fracture fixation devices and its application to predict inter-fragmentary movement.
    Duda GN; Kirchner H; Wilke HJ; Claes L
    J Biomech; 1998 Mar; 31(3):247-52. PubMed ID: 9645539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture healing of the sheep tibia treated using a unilateral external fixator. Comparison of static and dynamic fixation.
    Hente R; Cordey J; Rahn BA; Maghsudi M; von Gumppenberg S; Perren SM
    Injury; 1999; 30 Suppl 1():A44-51. PubMed ID: 10645369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early, full weightbearing with flexible fixation delays fracture healing.
    Augat P; Merk J; Ignatius A; Margevicius K; Bauer G; Rosenbaum D; Claes L
    Clin Orthop Relat Res; 1996 Jul; (328):194-202. PubMed ID: 8653957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of fixator frame stiffness in the control of fracture healing. An experimental study.
    Goodship AE; Watkins PE; Rigby HS; Kenwright J
    J Biomech; 1993 Sep; 26(9):1027-35. PubMed ID: 8408085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disadvantages of interfragmentary shear on fracture healing--mechanical insights through numerical simulation.
    Steiner M; Claes L; Ignatius A; Simon U; Wehner T
    J Orthop Res; 2014 Jul; 32(7):865-72. PubMed ID: 24648331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression.
    Aro HT; Chao EY
    Clin Orthop Relat Res; 1993 Aug; (293):8-17. PubMed ID: 8339513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.