These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4031250)

  • 1. Lateralization of sinusoidally amplitude-modulated tones: effects of spectral locus and temporal variation.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 1985 Aug; 78(2):514-23. PubMed ID: 4031250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateralization of low-frequency, complex waveforms: the use of envelope-based temporal disparities.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 1985 May; 77(5):1868-80. PubMed ID: 3998297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateralization of bands of noise and sinusoidally amplitude-modulated tones: effects of spectral locus and bandwidth.
    Trahiotis C; Bernstein LR
    J Acoust Soc Am; 1986 Jun; 79(6):1950-7. PubMed ID: 3722605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The measurement of the lateralization of narrow bands of noise using an acoustic pointing paradigm: the effect of sound-pressure level.
    Simon HJ; Collins CC; Jampolsky A; Morledge DE; Yu J
    J Acoust Soc Am; 1994 Mar; 95(3):1534-47. PubMed ID: 8176057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Listeners' sensitivity to "onset/offset" and "ongoing" interaural delays in high-frequency, sinusoidally amplitude-modulated tones.
    Buell TN; Griffin SJ; Bernstein LR
    J Acoust Soc Am; 2008 Jan; 123(1):279-94. PubMed ID: 18177158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some physical and psychological effects produced by selective delays of the envelope of narrow bands of noise.
    Amenta CA; Trahiotis C; Bernstein LR; Nuetzel JM
    Hear Res; 1987; 29(2-3):147-61. PubMed ID: 3624080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates.
    Monaghan JJ; Bleeck S; McAlpine D
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateralization of low-frequency tones and narrow bands of noise.
    Schiano JL; Trahiotis C; Bernstein LR
    J Acoust Soc Am; 1986 May; 79(5):1563-70. PubMed ID: 3711456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateralization of high frequency sounds as a function of interaural amplitude disparity.
    Rule SJ; Nickolaychuk BR
    Can J Exp Psychol; 1995 Sep; 49(3):368-75. PubMed ID: 9183981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1989 Feb; 61(2):257-68. PubMed ID: 2918354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateralization produced by envelope-based interaural temporal disparities of high-frequency, raised-sine stimuli: empirical data and modeling.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2011 Mar; 129(3):1501-8. PubMed ID: 21428514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of interaural delay in high-frequency sinusoidally amplitude-modulated tones, two-tone complexes, and bands of noise.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 1994 Jun; 95(6):3561-7. PubMed ID: 8046145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaural temporal discrimination using two sinusoidally amplitude-modulated, high-frequency tones: conditions of summation and interference.
    Buell TN; Trahiotis C
    J Acoust Soc Am; 1993 Jan; 93(1):480-7. PubMed ID: 8423263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaural time discrimination of envelopes carried on high-frequency tones as a function of level and interaural carrier mismatch.
    Blanks DA; Buss E; Grose JH; Fitzpatrick DC; Hall JW
    Ear Hear; 2008 Oct; 29(5):674-83. PubMed ID: 18596646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateralization based on interaural differences in the second-order amplitude modulator.
    Dietz M; Ewert SD; Hohmann V
    J Acoust Soc Am; 2012 Jan; 131(1):398-408. PubMed ID: 22280601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-order modulation detection thresholds for pure-tone and narrow-band noise carriers.
    Lorenzi C; Simpson MI; Millman RE; Griffiths TD; Woods WP; Rees A; Green GG
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2470-8. PubMed ID: 11757936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of dynamic interaural intensity differences.
    Grantham DW
    J Acoust Soc Am; 1984 Jul; 76(1):71-6. PubMed ID: 6747114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplitude modulation reduces loudness adaptation to high-frequency tones.
    Wynne DP; George SE; Zeng FG
    J Acoust Soc Am; 2015 Jul; 138(1):279-83. PubMed ID: 26233027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.