BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4031461)

  • 1. Genetic analysis of crossfostering data with sire and dam records.
    Riska B; Rutledge JJ; Atchley WR
    J Hered; 1985; 76(4):247-50. PubMed ID: 4031461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of dominance relationships on the estimation of dominance variance with sire-dam subclass effects.
    Gengler N; Van Vleck LD; MacNeil MD; Misztal I; Pariacote FA
    J Anim Sci; 1997 Nov; 75(11):2885-91. PubMed ID: 9374300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetric differences squared and analysis of variance procedures for estimating genetic and environmental variances and covariances for beef cattle weaning weight: II. Estimates from a data set.
    Bruckner CM; Slanger WD
    J Anim Sci; 1986 Dec; 63(6):1794-803. PubMed ID: 3818460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Within-herd heritability estimated with daughter-parent regression for yield and somatic cell score.
    Dechow CD; Norman HD
    J Dairy Sci; 2007 Jan; 90(1):482-92. PubMed ID: 17183117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model.
    Fernández EN; Legarra A; Martínez R; Sánchez JP; Baselga M
    J Anim Breed Genet; 2017 Jun; 134(3):184-195. PubMed ID: 28508486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and maternal variances and covariances and maternal phenotypic effects on preweaning growth of beef cattle.
    Cantet RJ; Kress DD; Anderson DC; Doornbos DE; Burfening PJ; Blackwell RL
    J Anim Sci; 1988 Mar; 66(3):648-60. PubMed ID: 3378922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dominance and epistatic genetic variances for litter size in pigs using genomic models.
    Vitezica ZG; Reverter A; Herring W; Legarra A
    Genet Sel Evol; 2018 Dec; 50(1):71. PubMed ID: 30577727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variance and covariance estimates for weaning weight of Senepol cattle.
    Wright DW; Johnson ZB; Brown CJ; Wildeus S
    J Anim Sci; 1991 Oct; 69(10):3945-51. PubMed ID: 1778806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetric differences squared and analysis of variance procedures for estimating genetic and environmental variances and covariances for beef cattle weaning weight: I. Comparison via simulation.
    Bruckner CM; Slanger WD
    J Anim Sci; 1986 Dec; 63(6):1779-93. PubMed ID: 3818459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On estimating non-additive genetic parameters in chickens.
    Silva MA; Berger PJ; Nordskog AW
    Br Poult Sci; 1976 Sep; 17(5):525-38. PubMed ID: 963570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive and nonadditive genetic variance in female fertility of Holsteins.
    Hoeschele I
    J Dairy Sci; 1991 May; 74(5):1743-52. PubMed ID: 1880275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covariances among sire by breed group of dam interaction effects in multibreed sire evaluation procedures.
    Elzo MA
    J Anim Sci; 1990 Dec; 68(12):4079-99. PubMed ID: 2286550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of including relationships in the estimation of genetic parameters of beef calves.
    Johnson ZB; Wright DW; Brown CJ; Bertrand JK; Brown AH
    J Anim Sci; 1992 Jan; 70(1):78-88. PubMed ID: 1582924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variance components for direct and maternal effects on body weights of Katahdin lambs.
    Ngere L; Burke JM; Notter DR; Morgan JLM
    J Anim Sci; 2017 Aug; 95(8):3396-3405. PubMed ID: 28805892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating maternal genetic effects in livestock.
    Bijma P
    J Anim Sci; 2006 Apr; 84(4):800-6. PubMed ID: 16543556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifting patterns in genetic control at the embryo-alevin boundary in brook charr.
    Perry GM; Audet C; Laplatte B; Bernatchez L
    Evolution; 2004 Sep; 58(9):2002-12. PubMed ID: 15521457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominance models with method R for stature of Holsteins.
    Misztal I; Lawlor TJ; Fernando RL
    J Dairy Sci; 1997 May; 80(5):975-8. PubMed ID: 9178138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid inversion of dominance relationship matrices for noninbred populations by including sire by dam subclass effects.
    Hoeschele I; VanRaden PM
    J Dairy Sci; 1991 Feb; 74(2):557-69. PubMed ID: 2045562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive, dominance, and epistatic loss effects on preweaning weight gain of crossbred beef cattle from different Bos taurus breeds.
    Roso VM; Schenkel FS; Miller SP; Wilton JW
    J Anim Sci; 2005 Aug; 83(8):1780-7. PubMed ID: 16024696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs.
    Vitezica ZG; Varona L; Elsen JM; Misztal I; Herring W; Legarra A
    Genet Sel Evol; 2016 Jan; 48():6. PubMed ID: 26825279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.