These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 4031771)

  • 1. Power and efficiency of insect flight muscle.
    Ellington CP
    J Exp Biol; 1985 Mar; 115():293-304. PubMed ID: 4031771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power requirements for the hovering flight of insects with different sizes.
    Lyu YZ; Sun M
    J Insect Physiol; 2021 Oct; 134():104293. PubMed ID: 34389411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the vertebrates: achieving maximum power during flight in insects and hummingbirds.
    Wells DJ; Ellington CP
    Adv Vet Sci Comp Med; 1994; 38B():219-32. PubMed ID: 7810379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of in vivo power output and efficiency of Nasonia asynchronous flight muscle.
    Lehmann FO; Heymann N
    J Biotechnol; 2006 Jun; 124(1):93-107. PubMed ID: 16414139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster.
    Lehmann FO; Dickinson MH
    J Exp Biol; 1997 Apr; 200(Pt 7):1133-43. PubMed ID: 9131808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle efficiency and elastic storage in the flight motor of Drosophila.
    Dickinson MH; Lighton JR
    Science; 1995 Apr; 268(5207):87-90. PubMed ID: 7701346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aerodynamic theory.
    Norberg UM; Kunz TH; Steffensen JF; Winter Y; von Helversen O
    J Exp Biol; 1993 Sep; 182():207-27. PubMed ID: 8228780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient hovering performance of hummingbirds under conditions of maximal loading.
    Chai P; Chen JS; Dudley R
    J Exp Biol; 1997 Mar; 200(Pt 5):921-9. PubMed ID: 9100364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects.
    Phan HV; Park HC
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The efficiency of an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2001 Dec; 204(Pt 23):4125-39. PubMed ID: 11809787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lift and power requirements of hovering flight in Drosophila virilis.
    Sun M; Tang J
    J Exp Biol; 2002 Aug; 205(Pt 16):2413-27. PubMed ID: 12124366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.
    Marden JH
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1077-84. PubMed ID: 8184949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The scaling of myofibrillar actomyosin ATPase activity in apid bee flight muscle in relation to hovering flight energetics.
    Askew GN; Tregear RT; Ellington CP
    J Exp Biol; 2010 Apr; 213(Pt 7):1195-206. PubMed ID: 20228356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative splicing, muscle calcium sensitivity, and the modulation of dragonfly flight performance.
    Marden JH; Fitzhugh GH; Wolf MR; Arnold KD; Rowan B
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):15304-9. PubMed ID: 10611380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spatially explicit model of muscle contraction explains a relationship between activation phase, power and ATP utilization in insect flight.
    Tanner BC; Regnier M; Daniel TL
    J Exp Biol; 2008 Jan; 211(Pt 2):180-6. PubMed ID: 18165245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile properties of the pigeon supracoracoideus during different modes of flight.
    Tobalske BW; Biewener AA
    J Exp Biol; 2008 Jan; 211(Pt 2):170-9. PubMed ID: 18165244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.