These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 4031783)
21. Excitation-contraction coupling and sarcoplasmic reticulum function in mechanically skinned fibres from fast skeletal muscles of aged mice. Plant DR; Lynch GS J Physiol; 2002 Aug; 543(Pt 1):169-76. PubMed ID: 12181289 [TBL] [Abstract][Full Text] [Related]
22. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Flucher BE; Takekura H; Franzini-Armstrong C Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530 [TBL] [Abstract][Full Text] [Related]
24. Sarcoplasmic reticulum function and contractile consequences in ureteric smooth muscles. Burdyga T; Wray S Novartis Found Symp; 2002; 246():208-17; discussion 217-20, 221-7. PubMed ID: 12164310 [TBL] [Abstract][Full Text] [Related]
25. Inward barium current and excitation-contraction coupling in frog twitch muscle fibres. Blaineau S; Jacquemond V; Allard B; Amsellem J; Moutin MJ; Rougier O J Muscle Res Cell Motil; 1993 Apr; 14(2):158-66. PubMed ID: 8315019 [TBL] [Abstract][Full Text] [Related]
26. A study of the mechanisms of excitation-contraction coupling in frog skeletal muscle based on measurements of [Ca Olivera JF; Pizarro G J Muscle Res Cell Motil; 2018 Apr; 39(1-2):41-60. PubMed ID: 30143958 [TBL] [Abstract][Full Text] [Related]
27. Ca component of action potential and excitation-contraction coupling in amphioxus muscle cells. Hagiwara S Nihon Seirigaku Zasshi; 1972 Feb; 34(2):94-5. PubMed ID: 5065099 [No Abstract] [Full Text] [Related]
28. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Beam KG; Knudson CM; Powell JA Nature; 1986 Mar 13-19; 320(6058):168-70. PubMed ID: 2419767 [TBL] [Abstract][Full Text] [Related]
29. Ultrastructural organization of the transverse tubules and the sarcoplasmic reticulum in a fish sound-producing muscle. Suzuki S; Nagayoshi H; Ishino K; Hino N; Sugi H J Electron Microsc (Tokyo); 2003; 52(3):337-47. PubMed ID: 12892224 [TBL] [Abstract][Full Text] [Related]
30. The collapse of the sarcoplasmic reticulum in skeletal muscle. Sommer JR; Wallace NR; Hasselbach W Z Naturforsch C Biosci; 1978; 33(7-8):561-73. PubMed ID: 152007 [TBL] [Abstract][Full Text] [Related]
31. Electromechanical coupling III. Estimation of the Ca storage capacity of the SR by analysing the time course of caffeine-induced tension transients of skinned muscle fibres. Thieleczek R Z Naturforsch C Biosci; 1982; 37(7-8):709-11. PubMed ID: 6814085 [TBL] [Abstract][Full Text] [Related]
32. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. Devine CE; Somlyo AV; Somlyo AP J Cell Biol; 1972 Mar; 52(3):690-718. PubMed ID: 5061887 [TBL] [Abstract][Full Text] [Related]
33. Cardiac and muscle fatigue due to relative functional overload induced by excessive stimulation, hypersensitive excitation-contraction coupling, or diminished performance capacity correlates with sarcoplasmic reticulum failure. O'Brien PJ; Shen H; Weiler J; Ianuzzo CD; Wittnich C; Moe GW; Armstrong PW Can J Physiol Pharmacol; 1991 Feb; 69(2):262-8. PubMed ID: 2054742 [TBL] [Abstract][Full Text] [Related]
34. Inositol trisphosphate and excitation-contraction coupling in skeletal muscle. Hidalgo C; Jaimovich E J Bioenerg Biomembr; 1989 Apr; 21(2):267-81. PubMed ID: 2546932 [TBL] [Abstract][Full Text] [Related]
35. Involvement of sarcoplasmic reticulum 'Ca2+ release channels' in excitation-contraction coupling in vertebrate skeletal muscle. Brunder DG; Györke S; Dettbarn C; Palade P J Physiol; 1992 Jan; 445():759-78. PubMed ID: 1380087 [TBL] [Abstract][Full Text] [Related]
36. The role of membrane processes in controlling skeletal muscle function. Kovács L Acta Physiol Acad Sci Hung; 1981; 57(1):1-8. PubMed ID: 6269349 [TBL] [Abstract][Full Text] [Related]
37. Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle. Volpe P; Di Virgilio F; Pozzan T; Salviati G FEBS Lett; 1986 Mar; 197(1-2):1-4. PubMed ID: 2419159 [TBL] [Abstract][Full Text] [Related]
38. Increased optical transparency associated with excitation--contraction coupling in voltage-clamped cut skeletal muscle fibres. Kovács L; Schneider MF Nature; 1977 Feb; 265(5594):556-60. PubMed ID: 299926 [No Abstract] [Full Text] [Related]
39. Excitation-contraction coupling in skeletal muscle. Caillé J; Ildefonse M; Rougier O Prog Biophys Mol Biol; 1985; 46(3):185-239. PubMed ID: 2418459 [No Abstract] [Full Text] [Related]
40. Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. Vergara J; Tsien RY; Delay M Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6352-6. PubMed ID: 2994073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]