These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 4031850)

  • 1. Restoration of sensory and motor function in earthworm escape reflex pathways following ventral nerve cord transplantation.
    Vining EP; Drewes CD
    J Neurobiol; 1985 Jul; 16(4):301-15. PubMed ID: 4031850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Donor-recipient interconnections between giant nerve fibers in transplanted ventral nerve cords of earthworms.
    Vining EP; Drewes CD
    J Neurobiol; 1985 Jul; 16(4):283-99. PubMed ID: 4031849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological correlates of rapid escape reflexes in intact earthworms, Eisenia foetida. I. Functional development of giant nerve fibers during embryonic and postembryonic periods.
    O'Gara B; Vining EP; Drewes CD
    J Neurobiol; 1982 Jul; 13(4):337-53. PubMed ID: 7108516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological correlates of rapid escape reflexes in intact earthworms, Eisenia foetida. II. Effects of food deprivation on the functional development of giant nerve fibers.
    Vining EP; O'Gara B; Drewes CD
    J Neurobiol; 1982 Jul; 13(4):355-67. PubMed ID: 7108517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of motor patterns by sensory feedback during earthworm locomotion.
    Mizutani K; Shimoi T; Ogawa H; Kitamura Y; Oka K
    Neurosci Res; 2004 Apr; 48(4):457-62. PubMed ID: 15041199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tail flattening reflex in Lumbricus: reconstitution after tail amputation and modifications in segmental nerve roots.
    Gras H
    J Neurobiol; 1984 Jul; 15(4):249-61. PubMed ID: 6090585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerve repair and behavioral recovery following brain transplantation in Notoplana acticola, a polyclad flatworm.
    Davies L; Keenan L; Koopowitz H
    J Exp Zool; 1985 Aug; 235(2):157-73. PubMed ID: 4056686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical regeneration and behavioral recovery following crush injury of the trigeminal root in lamprey.
    Calton JL; Philbrick K; McClellan AD
    J Comp Neurol; 1998 Jul; 396(3):322-37. PubMed ID: 9624587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection.
    Valero-Cabré A; Forés J; Navarro X
    J Neurophysiol; 2004 Jun; 91(6):2838-48. PubMed ID: 14762160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphallaxis in an aquatic oligochaete, Lumbriculus variegatus: reorganization of escape reflexes in regenerating body fragments.
    Drewes CD; Fourtner CR
    Dev Biol; 1990 Mar; 138(1):94-103. PubMed ID: 2307291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of neurons reveals processing areas and rules for synaptic connectivity in the cricket nervous system.
    Killian KA; Merritt DJ; Murphey RK
    J Neurobiol; 1993 Sep; 24(9):1187-206. PubMed ID: 8409977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat.
    García-Alías G; López-Vales R; Forés J; Navarro X; Verdú E
    J Neurosci Res; 2004 Mar; 75(5):632-41. PubMed ID: 14991839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.
    Calancie B; Alexeeva N; Broton JG; Molano MR
    Clin Neurophysiol; 2005 Jan; 116(1):75-86. PubMed ID: 15589186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve.
    Moldovan M; Sørensen J; Krarup C
    Brain; 2006 Sep; 129(Pt 9):2471-83. PubMed ID: 16905553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of cercal filiform hair sensory neurons in the first-instar cockroach restores escape behavior.
    Stern M; Ediger VL; Gibbon CR; Blagburn JM; Bacon JP
    J Neurobiol; 1997 Oct; 33(4):439-58. PubMed ID: 9322160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spinal cord connections of the myofascial trigger spots.
    Kuan TS; Hong CZ; Chen JT; Chen SM; Chien CH
    Eur J Pain; 2007 Aug; 11(6):624-34. PubMed ID: 17174128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A C-fiber reflex inhibition induced by electroacupuncture with different intensities applied at homotopic and heterotopic acupoints in rats selectively destructive effects on myelinated and unmyelinated afferent fibers.
    Zhu B; Xu WD; Rong PJ; Ben H; Gao XY
    Brain Res; 2004 Jun; 1011(2):228-37. PubMed ID: 15157809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflex stimulation of continuously oscillatory firing alpha and gamma-motoneurons in patients with spinal cord lesion.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():75-93. PubMed ID: 8934198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual pathways for tactile sensory information to thoracic interneurons in the cockroach.
    Pollack AJ; Ritzmann RE; Watson JT
    J Neurobiol; 1995 Jan; 26(1):33-46. PubMed ID: 7714524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chapter 27: Neural plasticity after nerve injury and regeneration.
    Navarro X
    Int Rev Neurobiol; 2009; 87():483-505. PubMed ID: 19682656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.