These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 4031983)

  • 1. T2-T5 spinothalamic neurons projecting to medial thalamus with viscerosomatic input.
    Ammons WS; Girardot MN; Foreman RD
    J Neurophysiol; 1985 Jul; 54(1):73-89. PubMed ID: 4031983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of spinoreticular and spinothalamic neurons with renal input.
    Ammons WS
    J Neurophysiol; 1987 Sep; 58(3):480-95. PubMed ID: 3655878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of intracardiac bradykinin on T2-T5 medial spinothalamic cells.
    Ammons WS; Girardot MN; Foreman RD
    Am J Physiol; 1985 Aug; 249(2 Pt 2):R147-52. PubMed ID: 4025572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periventricular gray inhibition of thoracic spinothalamic cells projecting to medial and lateral thalamus.
    Ammons WS; Girardot MN; Foreman RD
    J Neurophysiol; 1986 May; 55(5):1091-103. PubMed ID: 3711968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiopulmonary sympathetic input excites primate cuneothalamic neurons: comparison with spinothalamic tract neurons.
    Chandler MJ; Zhang J; Foreman RD
    J Neurophysiol; 1998 Aug; 80(2):628-37. PubMed ID: 9705456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological characteristics of primate spinothalamic neurons with renal and somatic inputs.
    Ammons WS
    J Neurophysiol; 1989 Jun; 61(6):1121-30. PubMed ID: 2746313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greater splanchnic excitation of primate T1-T5 spinothalamic neurons.
    Ammons WS; Blair RW; Foreman RD
    J Neurophysiol; 1984 Mar; 51(3):592-603. PubMed ID: 6699679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmental organization of visceral and somatic input onto C3-T6 spinothalamic tract cells of the monkey.
    Hobbs SF; Chandler MJ; Bolser DC; Foreman RD
    J Neurophysiol; 1992 Nov; 68(5):1575-88. PubMed ID: 1479431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of stimulating the subcoeruleus-parabrachial region on the non-noxious and noxious responses of T1-T5 spinothalamic tract neurons in the primate.
    Girardot MN; Brennan TJ; Martindale ME; Foreman RD
    Brain Res; 1987 Apr; 409(1):19-30. PubMed ID: 3034377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vagal, sympathetic and somatic sensory inputs to upper cervical (C1-C3) spinothalamic tract neurons in monkeys.
    Chandler MJ; Zhang J; Foreman RD
    J Neurophysiol; 1996 Oct; 76(4):2555-67. PubMed ID: 8899627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergence of phrenic and cardiopulmonary spinal afferent information on cervical and thoracic spinothalamic tract neurons in the monkey: implications for referred pain from the diaphragm and heart.
    Bolser DC; Hobbs SF; Chandler MJ; Ammons WS; Brennan TJ; Foreman RD
    J Neurophysiol; 1991 May; 65(5):1042-54. PubMed ID: 1869904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal inhibitory effects of cardiopulmonary afferent inputs in monkeys: neuronal processing in high cervical segments.
    Chandler MJ; Zhang J; Qin C; Foreman RD
    J Neurophysiol; 2002 Mar; 87(3):1290-302. PubMed ID: 11877503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinothalamic and spinohypothalamic tract neurons in the sacral spinal cord of rats. I. Locations of antidromically identified axons in the cervical cord and diencephalon.
    Katter JT; Dado RJ; Kostarczyk E; Giesler GJ
    J Neurophysiol; 1996 Jun; 75(6):2581-605. PubMed ID: 8793765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urinary bladder and hindlimb afferent input inhibits activity of primate T2-T5 spinothalamic tract neurons.
    Brennan TJ; Oh UT; Hobbs SF; Garrison DW; Foreman RD
    J Neurophysiol; 1989 Mar; 61(3):573-88. PubMed ID: 2709101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological study of spinothalamic inputs to ventrolateral and adjacent thalamic nuclei of the cat.
    Yen CT; Honda CN; Jones EG
    J Neurophysiol; 1991 Sep; 66(3):1033-47. PubMed ID: 1753274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey's face.
    Price DD; Dubner R; Hu JW
    J Neurophysiol; 1976 Sep; 39(5):936-53. PubMed ID: 824411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal and somatic input to spinal neurons antidromically activated from the ventrolateral medulla.
    Ammons WS
    J Neurophysiol; 1988 Dec; 60(6):1967-81. PubMed ID: 2466963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of spinothalamic tract cells in the cat cervical spinal cord to innocuous and graded noxious stimuli.
    Ferrington DG; Sorkin LS; Willis WD
    Somatosens Res; 1986; 3(4):339-58. PubMed ID: 3775154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrograde analyses of spinothalamic projections in the macaque monkey: input to ventral posterior nuclei.
    Craig AD
    J Comp Neurol; 2006 Dec; 499(6):965-78. PubMed ID: 17072832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The primate spinocervicothalamic pathway: responses of cells of the lateral cervical nucleus and spinocervical tract to innocuous and noxious stimuli.
    Downie JW; Ferrington DG; Sorkin LS; Willis WD
    J Neurophysiol; 1988 Mar; 59(3):861-85. PubMed ID: 3367201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.