These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4032462)

  • 21. Sensitivity of mitochondrial Mg++ flux to reagents which affect K+ flux.
    Diwan JJ; Haley T; Moore C
    J Bioenerg Biomembr; 1988 Apr; 20(2):261-71. PubMed ID: 3372496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Voltage-current relation and K+ transport in tobacco hornworm (Manduca sexta) midgut.
    Moffett DF
    J Membr Biol; 1980 Jun; 54(3):213-9. PubMed ID: 7392045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-dependent potassium exchange in human red cell ghosts.
    Simons TJ
    J Physiol; 1976 Mar; 256(1):227-44. PubMed ID: 933034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Basal membrane uptake in potassium-secreting cells of midgut of tobacco hornworm (Manduca sexta).
    Chao AC; Koch AR; Moffett DF
    Am J Physiol; 1990 Jan; 258(1 Pt 2):R112-9. PubMed ID: 2301622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leucine transport is affected by Bacillus thuringiensis Cry1 toxins in brush border membrane vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) midgut.
    Leonardi MG; Caccia S; González-Cabrera J; Ferré J; Giordana B
    J Membr Biol; 2006; 214(3):157-64. PubMed ID: 17558532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.
    Schnetkamp PP
    Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dependence of electrical transport pathways in Malpighian tubules on ATP.
    Wu DS; Beyenbach KW
    J Exp Biol; 2003 Jan; 206(Pt 2):233-43. PubMed ID: 12477894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of divalent cations on the activation of a calcium-dependent potassium channel in hippocampal neurons.
    McLarnon JG; Sawyer D
    Pflugers Arch; 1993 Jun; 424(1):1-8. PubMed ID: 8351203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of insulinotropic agents on cationic fluxes in islet cells.
    Malaisse WJ; Sener A; Herchuelz A
    Adv Exp Med Biol; 1979; 119():85-96. PubMed ID: 40405
    [No Abstract]   [Full Text] [Related]  

  • 30. Mechanisms of K+ transport across basolateral membranes of principal cells in Malpighian tubules of the yellow fever mosquito, Aedes aegypti.
    Scott BN; Yu MJ; Lee LW; Beyenbach KW
    J Exp Biol; 2004 Apr; 207(Pt 10):1655-63. PubMed ID: 15073198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling between oxidative metabolism and active transport in the midgut of tobacco hornworm.
    Mandel LJ; Moffett DF; Riddle TG; Grafton MM
    Am J Physiol; 1980 Jan; 238(1):C1-9. PubMed ID: 7356006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active transport by the cecropia midgut. 3. Midgut potential generated directly by active K-transport.
    Harvey WR; Haskell JA; Nedergaard S
    J Exp Biol; 1968 Feb; 48(1):1-12. PubMed ID: 5648814
    [No Abstract]   [Full Text] [Related]  

  • 33. Influence of Na+, K+, Mg2+ and cooling on proteosynthesis in hemocytes of Galleria mellonella.
    Marek M; Kroeger H
    Comp Biochem Physiol B; 1976; 53(1):45-7. PubMed ID: 1248218
    [No Abstract]   [Full Text] [Related]  

  • 34. The effect of calcium chelation on lymphocyte monovalent cation permeability, transport and concentration.
    Quastel MR; Segel GB; Lichtman MA
    J Cell Physiol; 1981 May; 107(2):165-70. PubMed ID: 6788784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of arginine modification on K(+)-dependent leucine uptake in brush-border membrane vesicles from the midgut of Philosamia cynthia larvae.
    Parenti P; Hanozet GM; Villa M; Giordana B
    Biochim Biophys Acta; 1994 Apr; 1191(1):27-32. PubMed ID: 8155681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. K+-dependent phenylalanine uptake in membrane vesicels isolated from the midgut of Philosamia cynthia larvae.
    Hanozet GM; Giordana B; Sacchi VF
    Biochim Biophys Acta; 1980 Mar; 596(3):481-6. PubMed ID: 7362826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti).
    Pacey EK; O'Donnell MJ
    J Insect Physiol; 2014 Feb; 61():42-50. PubMed ID: 24406662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Driving forces and pathways for H+ and K+ transport in insect midgut goblet cells.
    Moffett DF; Koch A
    J Exp Biol; 1992 Nov; 172():403-15. PubMed ID: 1337097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupled transepithelial sodium and potassium transport across isolated frog skin: effect of ouabain, amiloride and the polyene antibiotic filipin.
    Nielsen R
    J Membr Biol; 1979 Dec; 51(2):161-84. PubMed ID: 316829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cation-stimulated ATPase activity in purified plasma membranes from tobacco hornworm midgut.
    Wieczorek H; Wolfersberger MG; Cioffi M; Harvey WR
    Biochim Biophys Acta; 1986 May; 857(2):271-81. PubMed ID: 2939879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.