BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4033105)

  • 1. Enhanced cardioplegic protection by a fluorocarbon-oxygenated reperfusate: a phosphorus-31 nuclear magnetic resonance study.
    Bernard M; Menasche P; Canioni P; Grousset C; Fontanarava E; Geyer RP; Piwnica A; Cozzone PJ
    J Surg Res; 1985 Sep; 39(3):216-23. PubMed ID: 4033105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 31P-NMR study of high-energy phosphorylated compounds metabolism and intracellular pH in the perfused rat heart.
    Bernard M; Menasche P; Canioni P; Fontanarava E; Geyer RP; Piwnica A; Cozzone P
    Arch Int Physiol Biochim; 1985 Dec; 93(5):97-105. PubMed ID: 2424395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance. Protective effects of acidotic, glutamate-containing cardioplegic perfusates.
    Bernard M; Menasche P; Canioni P; Fontanarava E; Grousset C; Piwnica A; Cozzone P
    J Thorac Cardiovasc Surg; 1985 Aug; 90(2):235-42. PubMed ID: 2410746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance.
    Flaherty JT; Weisfeldt ML; Bulkley BH; Gardner TJ; Gott VL; Jacobus WE
    Circulation; 1982 Mar; 65(3):561-70. PubMed ID: 6799221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effects of dimethyl amiloride against postischemic myocardial dysfunction in rabbit hearts: phosphorus 31-nuclear magnetic resonance measurements of intracellular pH and cellular energy.
    Koike A; Akita T; Hotta Y; Takeya K; Kodama I; Murase M; Abe T; Toyama J
    J Thorac Cardiovasc Surg; 1996 Sep; 112(3):765-75. PubMed ID: 8800166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of controlled reperfusion after ischemia. XIX. Reperfusate composition: benefits of blood cardioplegia over fluosol DA cardioplegia during regional reperfusion--importance of including blood components in the initial reperfusate.
    Acar C; Partington MT; Buckberg GD
    J Thorac Cardiovasc Surg; 1991 Feb; 101(2):284-93. PubMed ID: 1992239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy metabolism and mechanical recovery after cardioplegia in moderately hypertrophied rats.
    Smolenski RT; Jayakumar J; Seymour AM; Yacoub MH
    Mol Cell Biochem; 1998 Mar; 180(1-2):137-43. PubMed ID: 9546640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 31P-nuclear magnetic resonance study of intermittent warm blood cardioplegia.
    Tian G; Xiang B; Butler KW; Calafiore AM; Mezzetti A; Salerno TA; Deslauriers R
    J Thorac Cardiovasc Surg; 1995 Jun; 109(6):1155-63. PubMed ID: 7776680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance of aerobic metabolism during global ischemia with perfluorocarbon cardioplegia improves myocardial preservation.
    Flaherty JT; Jaffin JH; Magovern GJ; Kanter KR; Gardner TJ; Miceli MV; Jacobus WE
    Circulation; 1984 Mar; 69(3):585-92. PubMed ID: 6692519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of potassium cardioplegia on high-energy phosphate kinetics during circulatory arrest with deep hypothermia in the newborn piglet heart.
    Clark BJ; Woodford EJ; Malec EJ; Norwood CR; Pigott JD; Norwood WI
    J Thorac Cardiovasc Surg; 1991 Feb; 101(2):342-9. PubMed ID: 1992245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postischemic synthesis of high energy phosphates in isolated porcine hearts during reperfusion with 11 or 25 degrees C hypothermic perfluorocarbon emulsion FC 43. A 31P magnetic resonance spectroscopy study.
    Scheule AM; Bohl A; Heinemann MK; Ziemer G; Henze E
    Eur J Cardiothorac Surg; 1997 Apr; 11(4):746-50. PubMed ID: 9151048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of high-energy phosphate metabolism during cardioplegic arrest and reperfusion: a phosphorus-31 nuclear magnetic resonance study.
    Pernot AC; Ingwall JS; Menasche P; Grousset C; Bercot M; Piwnica A; Fossel ET
    Circulation; 1983 Jun; 67(6):1296-303. PubMed ID: 6851024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of thromboxane A2 synthetase inhibitor on metabolism and contractility in ischemic reperfused rabbit heart.
    Kawabata H; Ryomoto T; Katori R
    Angiology; 1997 Aug; 48(8):689-97. PubMed ID: 9269138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does retrograde warm blood cardioplegic perfusion provide better protection of ischemic areas than antegrade warm blood cardioplegic perfusion? A magnetic resonance study in pig hearts.
    Ye J; Sun J; Hoffenberg EF; Shen J; Yang L; Summers R; Sálerno TA; Deslauriers R
    J Thorac Cardiovasc Surg; 1999 May; 117(5):994-1003. PubMed ID: 10220695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of high buffer cardioplegia and secondary cardioplegia on cardiac preservation and postischemic functional recovery: a 31P NMR and functional study in Langendorff perfused pig hearts.
    Tian GH; Mainwood GW; Biro GP; Smith KE; Butler KW; Lawrence D; Deslauriers R
    Can J Physiol Pharmacol; 1991 Nov; 69(11):1760-8. PubMed ID: 1804520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effectiveness of University of Wisconsin solution on prolonged myocardial protection as assessed by phosphorus 31-nuclear magnetic resonance spectroscopy and functional recovery.
    Karck M; Vivi A; Tassini M; Schwalb H; Askenasy N; Navon G; Borman JB; Uretzky G
    J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1356-64. PubMed ID: 1434717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Ca2+ reperfusion and enhanced susceptibility of the postischemic heart to the calcium paradox.
    Kirkels JH; Ruigrok TJ; Van Echteld CJ; Meijler FL
    Circ Res; 1989 Jun; 64(6):1158-64. PubMed ID: 2720916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection of the hypertrophied pig myocardium. A comparison of crystalloid, blood, and Fluosol-DA cardioplegia during prolonged aortic clamping.
    Novick RJ; Stefaniszyn HJ; Michel RP; Burdon FD; Salerno TA
    J Thorac Cardiovasc Surg; 1985 Apr; 89(4):547-66. PubMed ID: 3157028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyruvate/dichloroacetate supply during reperfusion accelerates recovery of cardiac energetics and improves mechanical function following cardioplegic arrest.
    Smolenski RT; Amrani M; Jayakumar J; Jagodzinski P; Gray CC; Goodwin AT; Sammut IA; Yacoub MH
    Eur J Cardiothorac Surg; 2001 Jun; 19(6):865-72. PubMed ID: 11404144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of L-arginine on myocardial recovery after cardioplegic arrest and ischemia under moderate and deep hypothermia.
    Amrani M; Gray CC; Smolenski RT; Goodwin AT; London A; Yacoub MH
    Circulation; 1997 Nov; 96(9 Suppl):II-274-9. PubMed ID: 9386110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.