These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4033543)

  • 41. [Effectiveness of using bactoculicde for controlling mosquito larvae in the Crimea].
    Stus' AA; Mikherskaia NI
    Med Parazitol (Mosk); 1986; (1):28-32. PubMed ID: 3754303
    [No Abstract]   [Full Text] [Related]  

  • 42. Evaluation of various control agents against mosquito larvae in rice paddies in Taiwan.
    Teng HJ; Lu LC; Wu YL; Fang JG
    J Vector Ecol; 2005 Jun; 30(1):126-32. PubMed ID: 16007966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Field trial of bacticide on larval populations of two species of vector mosquitoes in Calcutta.
    Biswas D; Ghosh SK; Dutta RN; Mukhopadhyay AK
    Indian J Malariol; 1997 Mar; 34(1):37-41. PubMed ID: 9291672
    [No Abstract]   [Full Text] [Related]  

  • 44. A new serovar of Bacillus thuringiensis possessing 28a28c flagellar antigenic structure: Bacillus thuringiensis serovar jegathesan, selectively toxic against mosquito larvae.
    Seleena P; Lee HL; Lecadet MM
    J Am Mosq Control Assoc; 1995 Dec; 11(4):471-3. PubMed ID: 8825511
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Efficacy of bactoculicide in controlling the larvae of malaria mosquitoes].
    Borisenko IA; Gaĭduk VP; Poletaev AP; Gracheva TS; Giorgadze ShA
    Voen Med Zh; 1984 Mar; (3):44-5. PubMed ID: 6730348
    [No Abstract]   [Full Text] [Related]  

  • 46. [Biolarvicide Bacillus sphaericus-2362(GRISELESF) for the control of malaria in a health area of the Republic of Honduras].
    Castro SD; Colombi E; Flores LN; Canales D
    Rev Cubana Med Trop; 2002; 54(2):134-41. PubMed ID: 15849940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Toxicity of isolates of Bacillus thuringiensis from Wroclaw against larvae of Aedes aegypti].
    Lonc E; Kucińska J; Rydzanicz K
    Wiad Parazytol; 2001; 47(3):297-303. PubMed ID: 16894738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors affecting the toxicity of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi (Diptera: Chironomidae).
    Stevens MM; Akhurst RJ; Clifton MA; Hughes PA
    J Invertebr Pathol; 2004 Jul; 86(3):104-10. PubMed ID: 15261774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Natural strains of Bacillus thuringiensis Berliner pathogenic for blood-sucking mosquitoes].
    Sokolova EI; Makarova GIa; Kulieva NM; Pavlova-Ivanova LK; Ul'ianova EA
    Med Parazitol (Mosk); 1985; (3):35-41. PubMed ID: 2863743
    [No Abstract]   [Full Text] [Related]  

  • 50. Ultralow volume application of Bacillus thuringiensis ssp. israelensis for the control of mosquitoes.
    Lee HL; Gregorio ER; Khadri MS; Seleena P
    J Am Mosq Control Assoc; 1996 Dec; 12(4):651-5. PubMed ID: 9046471
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effect of the concentration and number of mosquito larvae (Diptera, Culicidae) on the results of toxicological trials of bacterial insecticides].
    Rasnitsyn SP; Voĭtsik AA; Evseeva VE
    Med Parazitol (Mosk); 1986; (1):13-5. PubMed ID: 3959993
    [No Abstract]   [Full Text] [Related]  

  • 52. Production of concentrates of bacterial bio-insecticide Bacillus thuringiensis var. israelensis by flocculation/sedimentation.
    Luna-Finkler CL; Finkler L
    Acta Trop; 2008 Aug; 107(2):134-8. PubMed ID: 18582843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers.
    Chansang UR; Bhumiratana A; Kittayapong P
    J Vector Ecol; 2004 Dec; 29(2):218-26. PubMed ID: 15707281
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compatibility of cyclopoid copepods with mosquito insecticides.
    Marten GG; Che W; Bordes ES
    J Am Mosq Control Assoc; 1993 Jun; 9(2):150-4. PubMed ID: 8350070
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laboratory and field evaluation of Spherix, a formulation of Bacillus sphaericus (B-101), to control breeding of Anopheles stephensi and Culex quinquefasciatus.
    Mittal PK; Adak T; Batra CP; Sharma VP
    Indian J Malariol; 1993 Jun; 30(2):81-9. PubMed ID: 8405598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Field trials of biolarvicide Bacillus thuringiensis var. israelensis strain 164 and the larvivorous fish Aplocheilus blocki against Anopheles stephensi for malaria control in Goa, India.
    Kumar A; Sharma VP; Sumodan PK; Thavaselvam D
    J Am Mosq Control Assoc; 1998 Dec; 14(4):457-62. PubMed ID: 10084141
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effectiveness of Bacillus sphaericus strain 2362 on larvae of Anopheles nuñeztovari].
    Rojas JE; Mazzarri M; Sojo M; García-A GY
    Invest Clin; 2001 Jun; 42(2):131-46. PubMed ID: 11416979
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae).
    Romeis J; Dutton A; Bigler F
    J Insect Physiol; 2004; 50(2-3):175-83. PubMed ID: 15019519
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Duration of the larvicidal effect of spore crystalline mass of bacteria Bacillus thuringiensis spp. israelensis and Bacillus sphaericus in the laboratory setting].
    Ganushkina LA; Lebedeva NN; Azizbekian RR; Sergiev VP
    Med Parazitol (Mosk); 2000; (4):25-9. PubMed ID: 11210410
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The efficacy of the biological insecticide BLP with regard to the larvae of blood-sucking mosquitoes in Uzbekistan].
    Dremova VP; Karpov EG; Sitchikhina SV; Khaĭdarova ZM; Uzakov UIa; Gitsu FV; Labzin VV
    Med Parazitol (Mosk); 1993; (1):13-6. PubMed ID: 8101630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.