These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4034536)

  • 21. Angiotensin II type 1 receptor antisense gene therapy prevents altered renal vascular calcium homeostasis in hypertension.
    Gelband CH; Reaves PY; Evans J; Wang H; Katovich MJ; Raizada MK
    Hypertension; 1999 Jan; 33(1 Pt 2):360-5. PubMed ID: 9931130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heme oxygenase-mediated endothelial dysfunction in DOCA-salt, but not in spontaneously hypertensive, rat arterioles.
    Johnson FK; Durante W; Peyton KJ; Johnson RA
    Am J Physiol Heart Circ Physiol; 2004 May; 286(5):H1681-7. PubMed ID: 14693679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional cerebral blood flow autoregulation in normotensive and spontaneously hypertensive rats--effects of sympathetic denervation.
    Sadoshima S; Fujii K; Yao H; Kusuda K; Ibayashi S; Fujishima M
    Stroke; 1986; 17(5):981-4. PubMed ID: 3764971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attenuation and recovery of brain stem autoregulation in spontaneously hypertensive rats.
    Toyoda K; Fujii K; Ibayashi S; Kitazono T; Nagao T; Takaba H; Fujishima M
    J Cereb Blood Flow Metab; 1998 Mar; 18(3):305-10. PubMed ID: 9498847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of renal perfusion pressure on renal vascular resistance in the spontaneously hypertensive rat.
    Hsu CH; Slavicek JM
    Pflugers Arch; 1982 Jun; 393(4):340-3. PubMed ID: 7122209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variations in arterioles in spontaneously hypertensive rats. Morphometric analysis of afferent and efferent arterioles.
    Kimura K; Nanba S; Tojo A; Hirata Y; Matsuoka H; Sugimoto T
    Virchows Arch A Pathol Anat Histopathol; 1989; 415(6):565-9. PubMed ID: 2508313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Epstein M; Loutzenhiser R
    Circ Res; 1989 Dec; 65(6):1475-84. PubMed ID: 2582584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered myogenic responsiveness of the renal microvasculature in experimental hypertension.
    Hayashi K; Epstein M; Saruta T
    J Hypertens; 1996 Dec; 14(12):1387-401. PubMed ID: 8986920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impairment of flow-induced dilation of skeletal muscle arterioles with elevated oxygen in normotensive and hypertensive rats.
    Frisbee JC; Roman RJ; Falck JR; Linderman JR; Lombard JH
    Microvasc Res; 2000 Jul; 60(1):37-48. PubMed ID: 10873513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arterial and arteriolar contributions to skeletal muscle functional hyperemia in spontaneously hypertensive rats.
    Lash JM
    J Appl Physiol (1985); 1995 Jan; 78(1):93-100. PubMed ID: 7713849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arteriolar diameter and tissue oxygen tension during muscle contraction in hypertensive rats.
    Boegehold MA; Bohlen HG
    Hypertension; 1988 Aug; 12(2):184-91. PubMed ID: 3410527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential haemodynamic effects of endothelin receptor antagonist, SB 209670, in conscious hypertensive and normotensive rats.
    Bunting MW; Widdop RE
    Eur J Pharmacol; 1999 Sep; 381(1):13-21. PubMed ID: 10528129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The microvasculature in skeletal muscle. II. Arteriolar network anatomy in normotensive and spontaneously hypertensive rats.
    Engelson ET; Schmid-Schönbein GW; Zweifach BW
    Microvasc Res; 1986 May; 31(3):356-74. PubMed ID: 3713551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental hypertension produces diverse changes in the regional vascular responses to endothelin-1 in the rabbit and the rat.
    Roberts-Thomson P; McRitchie RJ; Chalmers JP
    J Hypertens; 1994 Nov; 12(11):1225-34. PubMed ID: 7868869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulation of arteriolar number by salbutamol in spontaneously hypertensive rats.
    Dusseau JW; Hutchins PM
    Am J Physiol; 1979 Jan; 236(1):H134-40. PubMed ID: 434165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autoregulation of cochlear blood flow in normotensive and spontaneously hypertensive rats following intracerebroventricularly mediated adjustment of blood pressure.
    Quirk WS; Dengerink HA; Harding JW; Bademian MJ; Swanson SJ; Wright JW
    Hear Res; 1989 Mar; 38(1-2):119-23. PubMed ID: 2708153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microvascular pressure, flow, and resistance in spontaneously hypertensive rats.
    Roy JW; Mayrovitz HN
    Hypertension; 1984; 6(6 Pt 1):877-86. PubMed ID: 6519744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active and passive arteriolar regulation in spontaneously hypertensive rats.
    Bohlen HG; Lash JM
    Hypertension; 1994 Jun; 23(6 Pt 1):757-64. PubMed ID: 8206574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exercise training causes skeletal muscle venular growth and alters hemodynamic responses in spontaneously hypertensive rats.
    Amaral SL; Silveira NP; Zorn TM; Michelini LC
    J Hypertens; 2001 May; 19(5):931-40. PubMed ID: 11393677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arteriolar proliferation in the rat cremaster muscle as a long-term autoregulatory response to reduced perfusion.
    Hogan RD; Hirschmann L
    Microvasc Res; 1984 May; 27(3):290-6. PubMed ID: 6203016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.