These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4036579)

  • 1. Contribution of the cortex to epiphyseal strength. The upper tibia studied in cadavers.
    Hvid I; Jensen J; Nielsen S
    Acta Orthop Scand; 1985 Jun; 56(3):256-9. PubMed ID: 4036579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indentation stiffness of the cancellous bone in the distal human tibia.
    Aitken GK; Bourne RB; Finlay JB; Rorabeck CH; Andreae PR
    Clin Orthop Relat Res; 1985 Dec; (201):264-70. PubMed ID: 4064414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical strength of trabecular bone at the knee.
    Hvid I
    Dan Med Bull; 1988 Aug; 35(4):345-65. PubMed ID: 3048922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual and combined effects of OA-related subchondral bone alterations on proximal tibial surface stiffness: a parametric finite element modeling study.
    Amini M; Nazemi SM; Lanovaz JL; Kontulainen S; Masri BA; Wilson DR; Szyszkowski W; Johnston JD
    Med Eng Phys; 2015 Aug; 37(8):783-91. PubMed ID: 26074327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Strength of the Proximal Tibia Following Total Knee Arthroplasty: A Cadaveric Study of Resection Depth and Bone Density.
    Sueyoshi T; Small SR; Elliott JB; Gibbs GE; Seale RB; Ritter MA
    Surg Technol Int; 2017 Oct; 31():170-176. PubMed ID: 29020705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.
    Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    Clin Biomech (Bristol, Avon); 2015 Aug; 30(7):703-12. PubMed ID: 26024555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone strength measurements at the proximal tibia. Penetration tests and epiphyseal compressive strength.
    Hvid I; Jensen J; Nielsen S
    Int Orthop; 1986; 10(4):271-5. PubMed ID: 3804529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.
    Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    Clin Biomech (Bristol, Avon); 2017 Jan; 41():1-8. PubMed ID: 27842233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of bone strength in the proximal tibia.
    Harada Y; Wevers HW; Cooke TD
    J Arthroplasty; 1988; 3(2):167-75. PubMed ID: 3397747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of tibial component intramedullary stems and implant-cortex contact on the strain distribution of the proximal tibia following total knee arthroplasty. An in vitro study.
    Bourne RB; Finlay JB
    Clin Orthop Relat Res; 1986 Jul; (208):95-9. PubMed ID: 3720148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of tibial loading using strain gauges.
    Funk JR; Crandall JR
    Biomed Sci Instrum; 2006; 42():160-5. PubMed ID: 16817602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability behavior of human tibias after bone removal--comparative examination in 15 cadaver tibia pairs.
    Gerressen M; Riediger D; Marx R; Saxe J; Ghassemi A
    J Oral Maxillofac Surg; 2010 Jan; 68(1):60-7. PubMed ID: 20006156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal tibial bone graft: the volume of cancellous bone, and strength of decancellated tibias by the medial approach.
    Vittayakittipong P; Nurit W; Kirirat P
    Int J Oral Maxillofac Surg; 2012 Apr; 41(4):531-6. PubMed ID: 22133867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tibial components on load transfer in the upper tibia.
    Reilly D; Walker PS; Ben-Dov M; Ewald FC
    Clin Orthop Relat Res; 1982 May; (165):273-82. PubMed ID: 7075071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of Subchondral Bone Puncture Strength in the Talus and Tibial Plafond: A Biomechanical Study.
    Ulrich SD; Parks BG; Tsai MA; Miller SD
    Foot Ankle Spec; 2018 Feb; 11(1):44-48. PubMed ID: 28347196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trabecular bone strength patterns at the proximal tibial epiphysis.
    Hvid I; Hansen SL
    J Orthop Res; 1985; 3(4):464-72. PubMed ID: 4067705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis.
    Kontulainen SA; Johnston JD; Liu D; Leung C; Oxland TR; McKay HA
    J Musculoskelet Neuronal Interact; 2008; 8(4):401-9. PubMed ID: 19147978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subchondral bone strength in arthrosis. Cadaver studies of tibial condyles.
    Hvid I; Hansen SL
    Acta Orthop Scand; 1986 Feb; 57(1):47-51. PubMed ID: 3962632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.