BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 4037462)

  • 1. Oxygen-dependent mechanisms in cerebral autoregulation.
    Kontos HA; Wei EP
    Ann Biomed Eng; 1985; 13(3-4):329-34. PubMed ID: 4037462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased venous pressure causes myogenic constriction of cerebral arterioles during local hyperoxia.
    Wei EP; Kontos HA
    Circ Res; 1984 Aug; 55(2):249-52. PubMed ID: 6744533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of cerebral arterioles to increased venous pressure.
    Wei EP; Kontos HA
    Am J Physiol; 1982 Sep; 243(3):H442-7. PubMed ID: 7114275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of tissue hypoxia in local regulation of cerebral microcirculation.
    Kontos HA; Wei EP; Raper AJ; Rosenblum WI; Navari RM; Patterson JL
    Am J Physiol; 1978 May; 234(5):H582-91. PubMed ID: 645924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of cerebral arteries and arterioles to acute hypotension and hypertension.
    Kontos HA; Wei EP; Navari RM; Levasseur JE; Rosenblum WI; Patterson JL
    Am J Physiol; 1978 Apr; 234(4):H371-83. PubMed ID: 645875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation.
    Baumbach GL; Heistad DD
    Ann Biomed Eng; 1985; 13(3-4):303-10. PubMed ID: 3898928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of local change in O2 saturation of hemoglobin on cerebral vasodilation from hypoxia and hypotension.
    Wei EP; Randad RS; Levasseur JE; Abraham DJ; Kontos HA
    Am J Physiol; 1993 Oct; 265(4 Pt 2):H1439-43. PubMed ID: 8238431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of adenosine in autoregulation of cerebral blood flow.
    Winn HR; Morii S; Berne RM
    Ann Biomed Eng; 1985; 13(3-4):321-8. PubMed ID: 4037461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of myogenic response in enhancing autoregulation of flow during sympathetic nerve stimulation.
    Ping P; Johnson PC
    Am J Physiol; 1992 Oct; 263(4 Pt 2):H1177-84. PubMed ID: 1415767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light/dye microvascular injury eliminates pial arteriolar dilation in hypotensive piglets.
    Eidson TH; Edrington JL; Albuquerque ML; Zuckerman SL; Leffler CW
    Pediatr Res; 1995 Jan; 37(1):10-4. PubMed ID: 7700723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular transmural pressure and autoregulation.
    Wagner EM; Traystman RJ
    Ann Biomed Eng; 1985; 13(3-4):311-20. PubMed ID: 4037460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in arterioles, arteries, and local perfusion of the brain stem during hemorrhagic hypertension.
    Toyoda K; Fujii K; Ibayashi S; Sadoshima S; Fujishima M
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1350-4. PubMed ID: 8967375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postischemic cerebral microvascular responses to norepinephrine and hypotension in newborn pigs.
    Leffler CW; Busija DW; Beasley DG; Armstead WM; Mirro R
    Stroke; 1989 Apr; 20(4):541-6. PubMed ID: 2929031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothermia attenuates the vasodilatory response of pial arterioles to hemorrhagic hypotension in the cat.
    Kishi K; Kawaguchi M; Kurehara K; Inoue S; Sakamoto T; Einaga T; Kitaguchi K; Furuya H
    Anesth Analg; 2000 Jul; 91(1):140-4. PubMed ID: 10866901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability in the magnitude of the cerebral blood flow response and the shape of the cerebral blood flow-pressure autoregulation curve during hypotension in normal rats [corrected].
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Qu Y; Easley KA; Perez-Trepichio AD
    Anesthesiology; 2002 Aug; 97(2):488-96. PubMed ID: 12151941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostanoids and pial arteriolar diameter in hypotensive newborn pigs.
    Leffler CW; Busija DW
    Am J Physiol; 1987 Apr; 252(4 Pt 2):H687-91. PubMed ID: 3551632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets.
    Bari F; Louis TM; Busija DW
    Stroke; 1998 Jan; 29(1):222-7; discussion 227-8. PubMed ID: 9445354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary microvascular responses to reductions in perfusion pressure. Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion.
    Chilian WM; Layne SM
    Circ Res; 1990 May; 66(5):1227-38. PubMed ID: 2335023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implication of adenosine A2A receptors in hypotension-induced vasodilation and cerebral blood flow autoregulation in rat pial arteries.
    Shin HK; Park SN; Hong KW
    Life Sci; 2000 Aug; 67(12):1435-45. PubMed ID: 10983840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.