BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 4038252)

  • 21. 2,4-Dinitrophenol (DNP)-induced injury in calcium-free hearts.
    Ganote CE; Grinwald PM; Nayler WG
    J Mol Cell Cardiol; 1984 Jun; 16(6):547-57. PubMed ID: 6748089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of anoxia, 2,4-dinitrophenol and salicylate on xylose transport by isolated rat soleus muscle.
    Korbl GP; Sloan IG; Gould MK
    Biochim Biophys Acta; 1977 Feb; 465(1):93-109. PubMed ID: 836834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy.
    Arnold DL; Taylor DJ; Radda GK
    Ann Neurol; 1985 Aug; 18(2):189-96. PubMed ID: 4037759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The influence of 2,4-dinitrophenol on the temperature effect of muscle contraction in experimental hyperthyroidism].
    Sobolev VI; Makhsudov MS; Merkhelevich LG; Chali G; Rabo G; Dakoshta M
    Fiziol Zh Im I M Sechenova; 1995 Mar; 81(3):80-4. PubMed ID: 7581564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prolonged aerobic exercise: physiological studies in rat gastrocnemius with additional observations on the effects of acute mitochondrial blockade.
    Byrne E; Morgan Hughes JA
    J Neurol Sci; 1989 Sep; 92(2-3):215-27. PubMed ID: 2809619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the action of epinephrine and a respiratory chain uncoupler, 2,4-dinitrophenol, on Ca2+-mobilization in isolated hepatocytes and perfused livers.
    Tohkin M; Yoshimatsu N; Matsubara T
    Jpn J Pharmacol; 1988 Jan; 46(1):61-9. PubMed ID: 3367547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study.
    Argov Z; Bank WJ; Maris J; Peterson P; Chance B
    Neurology; 1987 Feb; 37(2):257-62. PubMed ID: 3808305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A gated 31P-n.m.r. study of bioenergetic recovery in rat skeletal muscle after tetanic contraction.
    Challiss RA; Blackledge MJ; Shoubridge EA; Radda GK
    Biochem J; 1989 Apr; 259(2):589-92. PubMed ID: 2719669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elucidation of the mechanism of atorvastatin-induced myopathy in a rat model.
    El-Ganainy SO; El-Mallah A; Abdallah D; Khattab MM; Mohy El-Din MM; El-Khatib AS
    Toxicology; 2016 Jun; 359-360():29-38. PubMed ID: 27345130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review.
    Kemp GJ; Meyerspeer M; Moser E
    NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2,4-Dinitrophenol, muscle biopsy, and McArdle's disease.
    Heller SL; Brooke MH; Kaiser KK; Choski R
    Neurology; 1988 Jan; 38(1):15-9. PubMed ID: 3422109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dinitrophenol pretreatment of rat ventricular myocytes protects against damage by metabolic inhibition and reperfusion.
    Rodrigo GC; Lawrence CL; Standen NB
    J Mol Cell Cardiol; 2002 May; 34(5):555-69. PubMed ID: 12056859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 31P NMR studies of ATP concentrations and Pi-ATP exchange in the rat kidney in vivo: effects of inhibiting and stimulating renal metabolism.
    Shine N; Xuan A; Weiner MW
    Magn Reson Med; 1990 Jun; 14(3):445-60. PubMed ID: 2355828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria.
    Yang WC; Geiger PJ; Besman SP
    Biochem Biophys Res Commun; 1977 Jun; 76(3):882-7. PubMed ID: 901451
    [No Abstract]   [Full Text] [Related]  

  • 36. 2,4-Dinitrophenol--mechanism of action.
    El-Guindy MM; Neder AC; Gomes CB
    Cell Mol Biol Incl Cyto Enzymol; 1981; 27(5):399-402. PubMed ID: 7326696
    [No Abstract]   [Full Text] [Related]  

  • 37. A 31P-n.m.r. study of the acute effects of beta-blockade on the bioenergetics of skeletal muscle during contraction.
    Challiss RA; Hayes DJ; Radda GK
    Biochem J; 1987 Aug; 246(1):163-72. PubMed ID: 3675553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial coupling in vivo in mouse skeletal muscle.
    Marcinek DJ; Schenkman KA; Ciesielski WA; Conley KE
    Am J Physiol Cell Physiol; 2004 Feb; 286(2):C457-63. PubMed ID: 14522819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis.
    Thompson CH; Kemp GJ; Sanderson AL; Radda GK
    J Appl Physiol (1985); 1995 Jun; 78(6):2131-9. PubMed ID: 7665409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An animal model of mitochondrial myopathy: a biochemical and physiological investigation of rats treated in vivo with the NADH-CoQ reductase inhibitor, diphenyleneiodonium.
    Cooper JM; Petty RK; Hayes DJ; Challiss RA; Brosnan MJ; Shoubridge EA; Radda GK; Morgan-Hughes JA; Clark JB
    J Neurol Sci; 1988 Feb; 83(2-3):335-47. PubMed ID: 3128647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.