These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4038263)

  • 1. Exhaustive laccase-catalysed oxidation of a lignin model compound (vanillyl glycol) produces methanol and polymeric quinoid products.
    Lundquist K; Kristersson P
    Biochem J; 1985 Jul; 229(1):277-9. PubMed ID: 4038263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates.
    Marzullo L; Cannio R; Giardina P; Santini MT; Sannia G
    J Biol Chem; 1995 Feb; 270(8):3823-7. PubMed ID: 7876125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes.
    Kersten PJ; Kalyanaraman B; Hammel KE; Reinhammar B; Kirk TK
    Biochem J; 1990 Jun; 268(2):475-80. PubMed ID: 2163614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the factors affecting product distribution in laccase-catalyzed oxidation of a lignin model compound vanillyl alcohol: experimental and computational evaluation.
    Lahtinen M; Heinonen P; Oivanen M; Karhunen P; Kruus K; Sipilä J
    Org Biomol Chem; 2013 Sep; 11(33):5454-64. PubMed ID: 23851662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic monitoring of lignin and lignin derivatives biooxidation.
    Ibrahim V; Mamo G
    J Microbiol Methods; 2016 Jan; 120():53-5. PubMed ID: 26632344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of the oxidative demethylation of 4-(methoxymethyl)phenol by vanillyl-alcohol oxidase. Evidence for formation of a p-quinone methide intermediate.
    Fraaije MW; van Berkel WJ
    J Biol Chem; 1997 Jul; 272(29):18111-6. PubMed ID: 9218444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aromatic ring cleavage of 4,6-di(tert-butyl)guaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor.
    Kawai S; Umezawa T; Shimada M; Higuchi T
    FEBS Lett; 1988 Aug; 236(2):309-11. PubMed ID: 3410044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic properties of oxidation species generated in the lignin of wood fibers by a laccase catalyzed treatment: electronic hole state migration and stabilization in the lignin matrix.
    Barsberg S; Thygesen LG
    Biochim Biophys Acta; 1999 Nov; 1472(3):625-42. PubMed ID: 10564777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii.
    Guillén F; Muñoz C; Gómez-Toribio V; Martínez AT; Jesús Martínez M
    Appl Environ Microbiol; 2000 Jan; 66(1):170-5. PubMed ID: 10618219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative polymerization of lignins by laccase in water-acetone mixture.
    Fiţigău IF; Peter F; Boeriu CG
    Acta Biochim Pol; 2013; 60(4):817-22. PubMed ID: 24432339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of the laccase-mediator system in the oxidation of lignin.
    Crestini C; Jurasek L; Argyropoulos DS
    Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol.
    Ihssen J; Jankowska D; Ramsauer T; Reiss R; Luchsinger R; Wiesli L; Schubert M; Thöny-Meyer L; Faccio G
    Protein Eng Des Sel; 2017 Jun; 30(6):449-453. PubMed ID: 28482039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase-catalyzed oxidative polymerization of phenolic compounds.
    Sun X; Bai R; Zhang Y; Wang Q; Fan X; Yuan J; Cui L; Wang P
    Appl Biochem Biotechnol; 2013 Dec; 171(7):1673-80. PubMed ID: 23996120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of (R)- and (S)-propylene glycol with baker's yeast.
    Kometani T; Matsuno R
    Ann N Y Acad Sci; 1995 Mar; 750():421-4. PubMed ID: 7785871
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidation of the erythro and threo forms of the phenolic lignin model compound 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol by laccases and model oxidants.
    Bohlin C; Lundquist K; Jönsson LJ
    Bioorg Chem; 2009 Oct; 37(5):143-8. PubMed ID: 19646732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemo-enzymatically induced copolymerization of phenolics with acrylate compounds.
    Mai C; Schormann W; Hüttermann A
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):177-86. PubMed ID: 11330711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proposed oxidative metabolic pathway for polypropylene glycol in Sphingobium sp. strain PW-1.
    Hu X; Liu X; Tani A; Kimbara K; Kawai F
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):1115-8. PubMed ID: 18391452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat.
    Pourcel L; Routaboul JM; Kerhoas L; Caboche M; Lepiniec L; Debeaujon I
    Plant Cell; 2005 Nov; 17(11):2966-80. PubMed ID: 16243908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.