These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 403955)

  • 1. The binding of calcium to glycerinated muscle fibers in rigor. The effect of filament overlap.
    Fuchs F
    Biochim Biophys Acta; 1977 Apr; 491(2):523-31. PubMed ID: 403955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative interactions between calcium-binding sites on glycerinated muscle fibers. The influence of cross-bridge attachment.
    Fuchs F
    Biochim Biophys Acta; 1977 Nov; 462(2):314-22. PubMed ID: 588571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the relation between filament overlap and the number of calcium-binding sites on glycerinated muscle fibers.
    Fuchs F
    Biophys J; 1978 Mar; 21(3):273-7. PubMed ID: 630044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of magnesium ions on the binding of calcium ions to glycerinated rabbit psoas muscle fibers.
    Fuchs F; Black B
    Biochim Biophys Acta; 1980 Mar; 622(1):52-62. PubMed ID: 7362837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel measurements of bound calcium and force in glycerinated rabbit psoas muscle fibers.
    Fuchs F; Fox C
    Biochim Biophys Acta; 1982 Jan; 679(1):110-5. PubMed ID: 7055548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers.
    Güth K; Potter JD
    J Biol Chem; 1987 Oct; 262(28):13627-35. PubMed ID: 3654633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative binding of calcium to glycerinated skeletal muscle fibers.
    Fuchs F; Bayuk M
    Biochim Biophys Acta; 1976 Aug; 440(2):448-55. PubMed ID: 952976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subsarcomeric distribution of calcium in demembranated fibers of rabbit psoas muscle.
    Cantino ME; Allen TS; Gordon AM
    Biophys J; 1993 Jan; 64(1):211-22. PubMed ID: 8431542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The binding of calcium to detergent-extracted rabbit psoas muscle fibres during relaxation and force generation.
    Fuchs F
    J Muscle Res Cell Motil; 1985 Aug; 6(4):477-86. PubMed ID: 3851810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the charge distribution of glycerol-extracted muscle fibers in rigor, relaxation, and contraction.
    Pemrick SM; Edwards C
    J Gen Physiol; 1974 Nov; 64(5):551-67. PubMed ID: 4443791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filament overlap affects TnC extraction from skinned muscle fibres.
    Yates LD; Coby RL; Luo Z; Gordon AM
    J Muscle Res Cell Motil; 1993 Aug; 14(4):392-400. PubMed ID: 8227297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation.
    Borejdo J; Putnam S
    Biochim Biophys Acta; 1977 Mar; 459(3):578-95. PubMed ID: 849438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle cross-bridge attachment: effects on calcium binding and calcium activation.
    Gordon AM; Ridgway EB; Yates LD; Allen T
    Adv Exp Med Biol; 1988; 226():89-99. PubMed ID: 3261497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiffness of glycerinated rabbit psoas fibers in the rigor state. Filament-overlap relation.
    Tawada K; Kimura M
    Biophys J; 1984 Mar; 45(3):593-602. PubMed ID: 6713072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+)-dependence of structural changes in troponin-C in demembranated fibers of rabbit psoas muscle.
    Allen TS; Yates LD; Gordon AM
    Biophys J; 1992 Feb; 61(2):399-409. PubMed ID: 1547328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C.
    Metzger JM; Moss RL
    J Gen Physiol; 1991 Aug; 98(2):233-48. PubMed ID: 1940850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force, length, and Ca(2+)-troponin C affinity in skeletal muscle.
    Fuchs F; Wang YP
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C787-92. PubMed ID: 1835305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ and cross-bridge-induced changes in troponin C in skinned skeletal muscle fibers: effects of force inhibition.
    Martyn DA; Freitag CJ; Chase PB; Gordon AM
    Biophys J; 1999 Mar; 76(3):1480-93. PubMed ID: 10049329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle?
    Brandt PW; Cox RN; Kawai M
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4717-20. PubMed ID: 6933518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isometric force redevelopment of skinned muscle fibers from rabbit activated with and without Ca2+.
    Chase PB; Martyn DA; Hannon JD
    Biophys J; 1994 Nov; 67(5):1994-2001. PubMed ID: 7858136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.