BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 4039759)

  • 21. Phloretinyl-3'-benzylazide: a high affinity probe for the sugar transporter in human erythrocytes. I. Hexose transport inhibition and photolabeling of mutarotase.
    Fannin FF; Evans JO; Gibbs EM; Diedrich DF
    Biochim Biophys Acta; 1981 Dec; 649(2):189-201. PubMed ID: 7198487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose transport inhibitors protect against 1,2-cyclohexanedione-produced potassium loss from human red blood cells.
    Baker GF; O'Gorman R; Baker P
    Exp Physiol; 1998 Mar; 83(2):239-42. PubMed ID: 9568484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins.
    Pérez A; Ojeda P; Ojeda L; Salas M; Rivas CI; Vera JC; Reyes AM
    Biochemistry; 2011 Oct; 50(41):8834-45. PubMed ID: 21899256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of red cell urea and water permeability by sulfhydryl reagents.
    Toon MR; Solomon AK
    Biochim Biophys Acta; 1986 Aug; 860(2):361-75. PubMed ID: 3017418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a two-state mobile carrier mechanism in erythrocyte choline transport: effects of substrate analogs on inactivation of the carrier by N-ethylmaleimide.
    Devés R; Krupka RM
    J Membr Biol; 1981; 61(1):21-30. PubMed ID: 7265181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Na+ for H+ exchange in rabbit erythrocytes.
    Escobales N; Rivera A
    J Cell Physiol; 1987 Jul; 132(1):73-80. PubMed ID: 3036894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of DIDS inhibition of HL-60 cell anion exchange rules out ping-pong model with slippage.
    Restrepo D; Cronise BL; Snyder RB; Spinelli LJ; Knauf PA
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C535-44. PubMed ID: 1848401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The kinetics of glucose transport in human red blood cells.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1986 May; 857(2):146-54. PubMed ID: 3707948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes.
    Jennings ML
    J Gen Physiol; 1982 Feb; 79(2):169-85. PubMed ID: 6276495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective labeling of the erythrocyte hexose carrier with a maleimide derivative of glucosamine: relationship of an exofacial sulfhydryl to carrier conformation and structure.
    May JM
    Biochemistry; 1989 Feb; 28(4):1718-25. PubMed ID: 2719930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental alteration of phospholipid-protein interactions within the human erythrocyte membrane. Dependence on glycolytic metabolism.
    Haest CW; Deuticke B
    Biochim Biophys Acta; 1975 Sep; 401(3):468-80. PubMed ID: 1182148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The choline transport system of erythrocytes distribution of the free carrier in the membrane.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 Jul; 600(1):228-32. PubMed ID: 7397171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction among anion, cation and glucose transport proteins in the human red cell.
    Janoshazi A; Solomon AK
    J Membr Biol; 1989 Nov; 112(1):25-37. PubMed ID: 2593137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photolabeling of the human erythrocyte glucose carrier with androgenic steroids.
    May JM; Danzo BJ
    Biochim Biophys Acta; 1988 Aug; 943(2):199-210. PubMed ID: 3401477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential labeling of the erythrocyte hexose carrier by N-ethylmaleimide: correlation of transport inhibition with reactive carrier sulfhydryl groups.
    May JM
    Biochim Biophys Acta; 1989 Nov; 986(2):207-16. PubMed ID: 2590670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of external and internal H+ and Na+ with Na+/Na+ and Na+/H+ exchange of rabbit red cells: evidence for a common pathway.
    Morgan K; Canessa M
    J Membr Biol; 1990 Dec; 118(3):193-214. PubMed ID: 1963903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of a permeant maleimide derivative of cysteine with the erythrocyte glucose carrier. Differential labelling of an exofacial carrier thiol group and its role in the transport mechanism.
    May JM
    Biochem J; 1989 Nov; 263(3):875-81. PubMed ID: 2489029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single half-turnover of the glucose carrier of the human erythrocyte.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1987 Oct; 903(3):547-50. PubMed ID: 3663659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.