These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4039815)

  • 41. Determination of a non-methylated deoxycytidine residue in the recognition site of DNA-methyltransferases.
    Kubareva EA; Walter J; Vorob'eva OV; Razumikhin MV; Karyagina AS; Lau PC; Trautner T
    Biochemistry (Mosc); 2001 Dec; 66(12):1356-60. PubMed ID: 11812241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct determination of uracil in [32P,uracil-3H]poly(dA.dT) and bisulfite-treated phage PM2 DNA.
    Green DA; Deutsch WA
    Anal Biochem; 1984 Nov; 142(2):497-503. PubMed ID: 6528982
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uracil-DNA glycosylase as a probe for protein--DNA interactions.
    Devchand PR; McGhee JD; van de Sande JH
    Nucleic Acids Res; 1993 Jul; 21(15):3437-43. PubMed ID: 8346023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Perturbations of enzymic uracil excision due to purine damage in DNA.
    Duker NJ; Jensen DE; Hart DM; Fishbein DE
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4878-82. PubMed ID: 6956898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Escherichia coli uracil- and ethenocytosine-initiated base excision DNA repair: rate-limiting step and patch size distribution.
    Sung JS; Mosbaugh DW
    Biochemistry; 2003 Apr; 42(16):4613-25. PubMed ID: 12705824
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA.
    Slupphaug G; Mol CD; Kavli B; Arvai AS; Krokan HE; Tainer JA
    Nature; 1996 Nov; 384(6604):87-92. PubMed ID: 8900285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Abasic sites from cytosine as termination signals for DNA synthesis.
    Sagher D; Strauss B
    Nucleic Acids Res; 1985 Jun; 13(12):4285-98. PubMed ID: 3892486
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel activities of human uracil DNA N-glycosylase for cytosine-derived products of oxidative DNA damage.
    Dizdaroglu M; Karakaya A; Jaruga P; Slupphaug G; Krokan HE
    Nucleic Acids Res; 1996 Feb; 24(3):418-22. PubMed ID: 8602352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accelerated deamination of cytosine residues in UV-induced cyclobutane pyrimidine dimers leads to CC-->TT transitions.
    Peng W; Shaw BR
    Biochemistry; 1996 Aug; 35(31):10172-81. PubMed ID: 8756482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perturbations of enzymic uracil excision due to guanine modifications in DNA.
    Duker NJ; Hart DM
    Cancer Res; 1984 Feb; 44(2):602-4. PubMed ID: 6420049
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutation by [5-3H]cytosine decay in DNA of Escherichia coli lacking uracil-DNA glycosylase activity.
    Bockrath R; Wolff L; Person S
    Radiat Res; 1983 Dec; 96(3):635-40. PubMed ID: 6361841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters.
    Grunau C; Clark SJ; Rosenthal A
    Nucleic Acids Res; 2001 Jul; 29(13):E65-5. PubMed ID: 11433041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A kinetic analysis of substrate recognition by uracil-DNA glycosylase from herpes simplex virus type 1.
    Bellamy SR; Baldwin GS
    Nucleic Acids Res; 2001 Sep; 29(18):3857-63. PubMed ID: 11557818
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enzyme structures. DNA repair flips out.
    Demple B
    Curr Biol; 1995 Jul; 5(7):719-21. PubMed ID: 7583113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The post-incision steps of the DNA base excision repair pathway in Escherichia coli: studies with a closed circular DNA substrate containing a single U:G base pair.
    Sandigursky M; Freyer GA; Franklin WA
    Nucleic Acids Res; 1998 Mar; 26(5):1282-7. PubMed ID: 9469838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition.
    Biswas T; Clos LJ; SantaLucia J; Mitra S; Roy R
    J Mol Biol; 2002 Jul; 320(3):503-13. PubMed ID: 12096906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chloroethylnitrosourea-derived ethano cytosine and adenine adducts are substrates for Escherichia coli glycosylases excising analogous etheno adducts.
    Guliaev AB; Singer B; Hang B
    DNA Repair (Amst); 2004 Oct; 3(10):1311-21. PubMed ID: 15336626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Lethal and mutagenic action of incorporated 5-3H-cytosine on extracellular phage lambda].
    Konevega LV; Kalinin VL
    Radiobiologiia; 1985; 25(3):319-23. PubMed ID: 3161117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-fidelity correction of genomic uracil by human mismatch repair activities.
    Larson ED; Bednarski DW; Maizels N
    BMC Mol Biol; 2008 Oct; 9():94. PubMed ID: 18954457
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria.
    Purnapatre K; Handa P; Venkatesh J; Varshney U
    Nucleic Acids Res; 1999 Sep; 27(17):3487-92. PubMed ID: 10446237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.