BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4040040)

  • 1. Reconstitution of a partially purified Na+-dependent D-glucose transport system from rat jejunal brush border membranes.
    Ling KY; Faust RG
    Int J Biochem; 1985; 17(3):365-72. PubMed ID: 4040040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of a partially purified Na+-independent D-glucose transport system from rat jejunal basolateral membranes.
    Ling KY; Faust RG
    Int J Biochem; 1983; 15(1):27-34. PubMed ID: 6219015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial purification of hog kidney sodium-D-glucose cotransport system by affinity chromatography on a phlorizin polymer.
    Lin JT; Da Cruz ME; Riedel S; Kinne R
    Biochim Biophys Acta; 1981 Jan; 640(1):43-54. PubMed ID: 7194113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation and reconstitution of sodium-dependent glucose transport activity from renal brush-border membranes using gel-filtration chromatography.
    Poirée JC; Starita-Geribaldi M; Sudaka P
    Biochim Biophys Acta; 1986 Jun; 858(1):83-91. PubMed ID: 3707963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial purification of the Na+-dependent D-glucose transport system from renal brush border membranes.
    Im WB; Ling KY; Faust RG
    J Membr Biol; 1982; 65(1-2):131-7. PubMed ID: 7057458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatofocussing and centrifugal reconstitution as tools for the separation and characterization of the Na+-cotransport systems of the brush-border membrane.
    Lin JT; Schwarc K; Stroh A
    Biochim Biophys Acta; 1984 Jul; 774(2):254-60. PubMed ID: 6540119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of the partially purified renal phosphate (Pi) transporter.
    Schäli C; Vaughn DA; Fanestil DD
    Biochem J; 1986 Apr; 235(1):189-97. PubMed ID: 3741379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of the sodium-dependent d-glucose transport protein from brush-border membranes.
    Malathi P; Preiser H
    Biochim Biophys Acta; 1983 Nov; 735(3):314-24. PubMed ID: 6685531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of a putative Na+/D-glucose cotransporter from pig kidney brush border membranes on a phlorizin affinity column.
    Kitlar T; Morrison AI; Kinne R; Deutscher J
    FEBS Lett; 1988 Jul; 234(1):115-9. PubMed ID: 3292280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport.
    Lin JT; Szwarc K; Kinne R; Jung CY
    Biochim Biophys Acta; 1984 Nov; 777(2):201-8. PubMed ID: 6148966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the D-glucose binding polypeptide of the renal Na+-D-glucose cotransporter with a covalently binding D-glucose analog.
    Neeb M; Fasold H; Koepsell H
    FEBS Lett; 1985 Mar; 182(1):139-44. PubMed ID: 3838282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of D-glucose transport and high-affinity phlorizin binding after solubilization of kidney brush border proteins.
    Koepsell H; Menuhr H; Wissmüller TF; Ducis I; Haase W
    Ann N Y Acad Sci; 1980; 358():267-81. PubMed ID: 6938151
    [No Abstract]   [Full Text] [Related]  

  • 13. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and reconstitution of the intestinal Na+/glucose cotransporter.
    Peerce BE; Clarke RD
    J Biol Chem; 1990 Jan; 265(3):1731-6. PubMed ID: 2295652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and reconstitution of Na+/D-glucose cotransport carriers from guinea pig small intestine.
    Kano-Kameyama A; Hoshi T
    Jpn J Physiol; 1983; 33(6):955-70. PubMed ID: 6687072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen ion-coupled transport of D-glucose by phlorizin-sensitive sugar carrier in intestinal brush-border membranes.
    Hoshi T; Takuwa N; Abe M; Tajima A
    Biochim Biophys Acta; 1986 Oct; 861(3):483-8. PubMed ID: 3768358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of the renal brush-border membrane sodium/phosphate co-transporter.
    Vachon V; Delisle MC; Laprade R; Béliveau R
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):543-8. PubMed ID: 1832858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple liposomal system to reconstitute and assay highly efficient Na+/D-glucose cotransport from kidney brush-border membranes.
    Ducis I; Koepsell H
    Biochim Biophys Acta; 1983 Apr; 730(1):119-29. PubMed ID: 6681984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of glucose absorption by phlorizin affects intestinal functions in rats.
    Minami H; Kim JR; Tada K; Takahashi F; Miyamoto K; Nakabou Y; Sakai K; Hagihira H
    Gastroenterology; 1993 Sep; 105(3):692-7. PubMed ID: 8359641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model.
    Toggenburger G; Kessler M; Semenza G
    Biochim Biophys Acta; 1982 Jun; 688(2):557-71. PubMed ID: 7201854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.