BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4040135)

  • 1. The electrochemical H+ gradient in the yeast Rhodotorula glutinis.
    Höfer M; Nicolay K; Robillard G
    J Bioenerg Biomembr; 1985 Jun; 17(3):175-82. PubMed ID: 4040135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetraphenylphosphonium ion is a true indicator of negative plasma-membrane potential in the yeast Rhodotorula glutinis. Experiments under osmotic stress and at low external pH values.
    Höfer M; Künemund A
    Biochem J; 1985 Feb; 225(3):815-9. PubMed ID: 4038875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the H+/sugar symport in yeast under conditions of depolarized plasma membrane.
    Severin J; Langel P; Höfer M
    J Bioenerg Biomembr; 1989 Jun; 21(3):321-34. PubMed ID: 2545668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrochemical gradient of H+ in Candida albicans and its relevance to the uptake of nutrients.
    Prasad R; Höfer M
    Biochem Int; 1987 Apr; 14(4):617-26. PubMed ID: 2839177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane potential and cation permeability. A study with a nystatin-resistant mutant of Rhodotorula gracilis (Rhodosporidium toruloides).
    Höfer M; Huh H; Künemund A
    Biochim Biophys Acta; 1983 Nov; 735(2):211-4. PubMed ID: 6684955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis).
    Höfer M; Misra PC
    Biochem J; 1978 Apr; 172(1):15-22. PubMed ID: 26338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier-mediated transport of D-ribose by Rhodotorula glutinis.
    Lavi LE; Hermiller JB; Griffin CC
    Biochim Biophys Acta; 1981 Oct; 648(1):1-5. PubMed ID: 6794623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible energization of K+ accumulation into metabolizing yeast by the protonmotive force. Binding correction to be applied in the calculation of the yeast membrane potential from tetraphenylphosphonium distribution.
    Boxman AW; Dobbelmann J; Borst-Pauwels GW
    Biochim Biophys Acta; 1984 Apr; 772(1):51-7. PubMed ID: 6370307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of delta psi, delta pH and the proton electrochemical gradient in isolated cholinergic synaptic vesicles.
    Angel I; Michaelson DM
    Life Sci; 1981 Jul; 29(4):411-6. PubMed ID: 6268913
    [No Abstract]   [Full Text] [Related]  

  • 10. Cyclosporin A increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer's disease cybrids.
    Cassarino DS; Swerdlow RH; Parks JK; Parker WD; Bennett JP
    Biochem Biophys Res Commun; 1998 Jul; 248(1):168-73. PubMed ID: 9675105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potentials in yeast cells measured by direct and indirect methods.
    Vacata V; Kotyk A; Sigler K
    Biochim Biophys Acta; 1981 Apr; 643(1):265-8. PubMed ID: 7016192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.
    Friedberg I; Kaback HR
    J Bacteriol; 1980 May; 142(2):651-8. PubMed ID: 7380805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of aeration on the physiological activity and lipogenesis in Rhodotorula glutinis yeasts].
    Zalashko MV; Romanova LV; Gerbeda VV
    Mikrobiologiia; 1983; 52(3):428-33. PubMed ID: 6684726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active transport of charged substrates by a proton/sugar co-transport system. Amino-sugar uptake in the yeast Rhodotorula gracilis.
    Niemietz C; Hauer R; Höfer M
    Biochem J; 1981 Feb; 194(2):433-41. PubMed ID: 6272730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton motive force and the physiological basis of delta pH maintenance in thiobacillus acidophilus.
    Matin A; Wilson B; Zychlinsky E; Matin M
    J Bacteriol; 1982 May; 150(2):582-91. PubMed ID: 6279562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply.
    Beauvoit B; Rigoulet M; Raffard G; Canioni P; Guérin B
    Biochemistry; 1991 Nov; 30(47):11212-20. PubMed ID: 1835654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hyperthermia on the intracellular pH and membrane potential of Chinese hamster ovary cells.
    Gonzalez-Mendez RR; Hahn GM
    Int J Hyperthermia; 1989; 5(1):69-84. PubMed ID: 2921536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton motive force is not obligatory for growth of Escherichia coli.
    Kinoshita N; Unemoto T; Kobayashi H
    J Bacteriol; 1984 Dec; 160(3):1074-7. PubMed ID: 6389506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):573-81. PubMed ID: 6282253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.