These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 4040602)
1. Disruption of the three cytoskeletal networks in mammalian cells does not affect transcription, translation, or protein translocation changes induced by heat shock. Welch WJ; Feramisco JR Mol Cell Biol; 1985 Jul; 5(7):1571-81. PubMed ID: 4040602 [TBL] [Abstract][Full Text] [Related]
2. Concurrent collapse of keratin filaments, aggregation of organelles, and inhibition of protein synthesis during the heat shock response in mammary epithelial cells. Shyy TT; Asch BB; Asch HL J Cell Biol; 1989 Mar; 108(3):997-1008. PubMed ID: 2466040 [TBL] [Abstract][Full Text] [Related]
3. Studies on a possible relationship between alterations in the cytoskeleton and induction of heat shock protein synthesis in mammalian cells. van Bergen en Henegouwen PM; Jordi WJ; van Dongen G; Ramaekers FC; Amesz H; Linnemans WA Int J Hyperthermia; 1985; 1(1):69-83. PubMed ID: 2426373 [TBL] [Abstract][Full Text] [Related]
4. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells. van Bergen en Henegouwen PM; Linnemans AM Exp Cell Res; 1987 Aug; 171(2):367-75. PubMed ID: 3305049 [TBL] [Abstract][Full Text] [Related]
5. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. Welch WJ; Suhan JP J Cell Biol; 1985 Oct; 101(4):1198-211. PubMed ID: 3900086 [TBL] [Abstract][Full Text] [Related]
6. Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton. Galigniana MD; Scruggs JL; Herrington J; Welsh MJ; Carter-Su C; Housley PR; Pratt WB Mol Endocrinol; 1998 Dec; 12(12):1903-13. PubMed ID: 9849964 [TBL] [Abstract][Full Text] [Related]
7. Immunofluorescence localization of the 90-kDa heat-shock protein to cytoskeleton. Czar MJ; Welsh MJ; Pratt WB Eur J Cell Biol; 1996 Aug; 70(4):322-30. PubMed ID: 8864660 [TBL] [Abstract][Full Text] [Related]
8. A heat-shock-like response with cytoskeletal disruption occurs following hydrostatic pressure in MG-63 osteosarcoma cells. Haskin CL; Athanasiou KA; Klebe R; Cameron IL Biochem Cell Biol; 1993; 71(7-8):361-71. PubMed ID: 7510113 [TBL] [Abstract][Full Text] [Related]
9. Cytoskeletal thermotolerance in NRK cells. Ohtsuka K; Liu YC; Kaneda T Int J Hyperthermia; 1993; 9(1):115-24. PubMed ID: 8433021 [TBL] [Abstract][Full Text] [Related]
10. Concomitant alterations in distribution of 70 kDa heat shock proteins, cytoskeleton and organelles in heat shocked 9L cells. Wang TT; Chiang AS; Chu JJ; Cheng TJ; Chen TM; Lai YK Int J Biochem Cell Biol; 1998 Jun; 30(6):745-59. PubMed ID: 9695029 [TBL] [Abstract][Full Text] [Related]
11. Microtubules, microfilaments and the transport of acetylcholine receptors in embryonic myotubes. Connolly JA Exp Cell Res; 1985 Aug; 159(2):430-40. PubMed ID: 4040866 [TBL] [Abstract][Full Text] [Related]
12. Heat-induced alterations in embryonic cytoskeletal and stress proteins precede somite malformations in rat embryos. Fisher BR; Heredia DJ; Brown KM Teratog Carcinog Mutagen; 1996; 16(1):49-64. PubMed ID: 8792533 [TBL] [Abstract][Full Text] [Related]
13. Integrity of intermediate filaments is associated with the development of acquired thermotolerance in 9L rat brain tumor cells. Lee YC; Lai YK J Cell Biochem; 1995 Jan; 57(1):150-62. PubMed ID: 7721954 [TBL] [Abstract][Full Text] [Related]
14. The heat shock response. Craig EA CRC Crit Rev Biochem; 1985; 18(3):239-80. PubMed ID: 2412760 [TBL] [Abstract][Full Text] [Related]
15. [The role of cytoskeleton structures in regulation of Ca2+ responses in macrophages]. Krutetskaia ZI; Lebedev OE; Krutetskaia NI; Kurilova LS Tsitologiia; 2001; 43(1):61-71. PubMed ID: 11392816 [TBL] [Abstract][Full Text] [Related]
16. Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Hultmark D; Klemenz R; Gehring WJ Cell; 1986 Feb; 44(3):429-38. PubMed ID: 3943132 [TBL] [Abstract][Full Text] [Related]
17. Multiple inducers of the Drosophila heat shock locus 93D (hsr omega): inducer-specific patterns of the three transcripts. Bendena WG; Garbe JC; Traverse KL; Lakhotia SC; Pardue ML J Cell Biol; 1989 Jun; 108(6):2017-28. PubMed ID: 2500442 [TBL] [Abstract][Full Text] [Related]
18. Induction of a chicken small heat shock (stress) protein: evidence of multilevel posttranscriptional regulation. Edington BV; Hightower LE Mol Cell Biol; 1990 Sep; 10(9):4886-98. PubMed ID: 2388629 [TBL] [Abstract][Full Text] [Related]
19. Accumulation of heat shock protein 70 RNA and its relationship to protein synthesis after heat shock in mammalian cells. Widelitz RB; Duffy JJ; Gerner EW Exp Cell Res; 1987 Feb; 168(2):539-45. PubMed ID: 3803453 [TBL] [Abstract][Full Text] [Related]
20. Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Heydari AR; Wu B; Takahashi R; Strong R; Richardson A Mol Cell Biol; 1993 May; 13(5):2909-18. PubMed ID: 7682654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]