These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 4040866)

  • 1. Microtubules, microfilaments and the transport of acetylcholine receptors in embryonic myotubes.
    Connolly JA
    Exp Cell Res; 1985 Aug; 159(2):430-40. PubMed ID: 4040866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the cytoskeleton in the formation, stabilization, and removal of acetylcholine receptor clusters in cultured muscle cells.
    Connolly JA
    J Cell Biol; 1984 Jul; 99(1 Pt 1):148-54. PubMed ID: 6539781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin filaments and acetylcholine receptor clusters in embryonic chick myotubes.
    Connolly JA; Graham AJ
    Eur J Cell Biol; 1985 May; 37():191-5. PubMed ID: 2411560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubules and the formation of acetylcholine receptor clusters in chick embryonic muscle cells.
    Connolly JA; Oldfin BV
    Eur J Cell Biol; 1985 Nov; 39(1):173-8. PubMed ID: 2867906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cytoskeleton, endocytosis and cell polarity in the mouse preimplantation embryo.
    Fleming TP; Cannon PM; Pickering SJ
    Dev Biol; 1986 Feb; 113(2):406-19. PubMed ID: 3512332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An acetylcholinesterase-mediated density shift technique demonstrates that coated vesicles from chick myotubes may contain both newly synthesized acetylcholinesterase and acetylcholine receptors.
    Porter-Jordan K; Benson RJ; Buoniconti P; Fine RE
    J Neurosci; 1986 Nov; 6(11):3112-9. PubMed ID: 3772423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposing microtubule- and actin-dependent forces in the development and maintenance of structural polarity in retinal photoreceptors.
    Madreperla SA; Adler R
    Dev Biol; 1989 Jan; 131(1):149-60. PubMed ID: 2642427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that coated vesicles transport acetylcholine receptors to the surface membrane of chick myotubes.
    Bursztajn S; Fischbach GD
    J Cell Biol; 1984 Feb; 98(2):498-506. PubMed ID: 6141172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis.
    Sawada T; Schatten G
    Dev Biol; 1989 Apr; 132(2):331-42. PubMed ID: 2466714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytoskeleton and rat granulosa cell steroidogenesis: possible involvement of microtubules and microfilaments.
    Carnegie JA; Tsang BK
    Biol Reprod; 1988 Feb; 38(1):100-8. PubMed ID: 3365461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels.
    Tomasek JJ; Hay ED
    J Cell Biol; 1984 Aug; 99(2):536-49. PubMed ID: 6146628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity.
    Salas PJ; Misek DE; Vega-Salas DE; Gundersen D; Cereijido M; Rodriguez-Boulan E
    J Cell Biol; 1986 May; 102(5):1853-67. PubMed ID: 2871031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of microtubules and other cytoskeletal filaments during myotube elongation as revealed by fluorescence microscopy.
    Saitoh O; Arai T; Obinata T
    Cell Tissue Res; 1988 May; 252(2):263-73. PubMed ID: 3383210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dissection of the mechanisms generating and stabilizing polarity in mouse 8- and 16-cell blastomeres: the role of cytoskeletal elements.
    Johnson MH; Maro B
    J Embryol Exp Morphol; 1985 Dec; 90():311-34. PubMed ID: 2871124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased endocytosis of acetylcholine receptors by dystrophic mouse myotubes in vitro.
    Cossu G; Eusebi F; Senni MI; Molinaro M
    Dev Biol; 1985 Aug; 110(2):362-8. PubMed ID: 4018404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation by micromachined grooves of different dimensions.
    Oakley C; Jaeger NA; Brunette DM
    Exp Cell Res; 1997 Aug; 234(2):413-24. PubMed ID: 9260912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochalasin separates microtubule disassembly from loss of asymmetric morphology.
    Solomon F; Magendantz M
    J Cell Biol; 1981 Apr; 89(1):157-61. PubMed ID: 7014572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo.
    Priess JR; Hirsh DI
    Dev Biol; 1986 Sep; 117(1):156-73. PubMed ID: 3743895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of cytoskeletal proteins with newly formed acetylcholine receptor aggregates induced by embryonic brain extract.
    Daniels MP; Krikorian JG; Olek AJ; Bloch RJ
    Exp Cell Res; 1990 Jan; 186(1):99-108. PubMed ID: 2105221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.