These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 4040866)

  • 41. Cellular response to rabies virus infection.
    Bussereau F; Perrin P
    Comp Immunol Microbiol Infect Dis; 1982; 5(1-3):49-59. PubMed ID: 6290135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of microtubule- and microfilament-disrupting drugs on preimplantation mouse embryos.
    Siracusa G; Whittingham DG; De Felici M
    J Embryol Exp Morphol; 1980 Dec; 60():71-82. PubMed ID: 7198136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acetylcholine receptor clusters of rat myotubes have at least three domains with distinctive cytoskeletal and membranous components.
    Pumplin DW
    J Cell Biol; 1989 Aug; 109(2):739-53. PubMed ID: 2760110
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of cytochalasins on surfactant release from alveolar type II cells.
    Rice WR; Osterhoudt KC; Whitsett JA
    Biochim Biophys Acta; 1984 Sep; 805(1):12-8. PubMed ID: 6541060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuro-2a neuroblastoma cells form neurites in the presence of taxol and cytochalasin D.
    Spero DA; Roisen FJ
    Brain Res; 1985 Nov; 355(1):155-9. PubMed ID: 2866814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of microtubules and microfilaments in the control of the nuclear movement during maturation of mouse oocyte.
    Alexandre H; Van Cauwenberge A; Mulnard J
    Dev Biol; 1989 Dec; 136(2):311-20. PubMed ID: 2583368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microtubule-dependent movement of symbiotic algae and granules in Paramecium bursaria.
    Nishihara N; Horiike S; Oka Y; Takahashi T; Kosaka T; Hosoya H
    Cell Motil Cytoskeleton; 1999; 43(2):85-98. PubMed ID: 10379834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel subpopulation of neuronal acetylcholine receptors among those binding alpha-bungarotoxin.
    Pugh PC; Corriveau RA; Conroy WG; Berg DK
    Mol Pharmacol; 1995 Apr; 47(4):717-25. PubMed ID: 7723732
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Teloplasm formation in a leech, Helobdella triserialis, is a microtubule-dependent process.
    Astrow SH; Holton B; Weisblat DA
    Dev Biol; 1989 Oct; 135(2):306-19. PubMed ID: 2776970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of cytoskeletal disrupting agents on mouse mammary tumor virus replication.
    Maldarelli F; King NW; Yagi MJ
    Virus Res; 1987 Jun; 7(4):281-95. PubMed ID: 3039751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of cytochalasin congeners, microtubule-directed agents, and doxorubicin alone or in combination against human ovarian carcinoma cell lines in vitro.
    Trendowski M; Christen TD; Acquafondata C; Fondy TP
    BMC Cancer; 2015 Sep; 15():632. PubMed ID: 26357852
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction of the cytoskeletal framework with acetylcholine receptor on th surface of embryonic muscle cells in culture.
    Prives J; Fulton AB; Penman S; Daniels MP; Christian CN
    J Cell Biol; 1982 Jan; 92(1):231-6. PubMed ID: 7199053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of cytochalasin D and colchicine on the uptake, translocation, and biliary secretion of horseradish peroxidase and [14C]sodium taurocholate in the rat.
    Kacich RL; Renston RH; Jones AL
    Gastroenterology; 1983 Aug; 85(2):385-94. PubMed ID: 6683208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of microtubule-destroying drugs on the spreading and shape of cultured epithelial cells.
    Domnina LV; Rovensky JA; Vasiliev JM; Gelfand IM
    J Cell Sci; 1985 Mar; 74():267-82. PubMed ID: 3897252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lavender, a chick melanocyte mutant with defective melanosome translocation: a possible role for 10 nm filaments and microfilaments but not microtubules.
    Mayerson PL; Brumbaugh JA
    J Cell Sci; 1981 Oct; 51():25-51. PubMed ID: 7198647
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Localization of actin, beta-spectrin, 43 x 10(3) Mr and 58 x 10(3) Mr proteins to receptor-enriched domains of newly formed acetylcholine receptor aggregates in isolated myotube membranes.
    Daniels MP
    J Cell Sci; 1990 Dec; 97 ( Pt 4)():615-26. PubMed ID: 2127596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of microtubules in the cytoplasmic compartmentation of neurons.
    Baas PW; Sinclair GI; Heidemann SR
    Brain Res; 1987 Sep; 420(1):73-81. PubMed ID: 3676755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of microtubule and microfilament-disrupting drugs on prolactin-stimulated progesterone synthesis and secretion by cultured porcine theca cells.
    Gregoraszczuk EL; Stoklosowa S
    Acta Histochem; 1997 Jun; 99(2):207-15. PubMed ID: 9248578
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression and channel properties of alpha-bungarotoxin-sensitive acetylcholine receptors on chick ciliary and choroid neurons.
    McNerney ME; Pardi D; Pugh PC; Nai Q; Margiotta JF
    J Neurophysiol; 2000 Sep; 84(3):1314-29. PubMed ID: 10980005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Elevation of cyclic AMP activates an actin-dependent contraction in teleost retinal rods.
    O'Connor P; Burnside B
    J Cell Biol; 1982 Nov; 95(2 Pt 1):445-52. PubMed ID: 6183273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.