These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 4041421)
1. Effects of human fibrinogen and its cleavage products on activation of human plasminogen by streptokinase. Chibber BA; Morris JP; Castellino FJ Biochemistry; 1985 Jul; 24(14):3429-34. PubMed ID: 4041421 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of the streptokinase-catalyzed activation of human plasminogen by human fibrinogen and its plasminolysis products. Strickland DK; Morris JP; Castellino FJ Biochemistry; 1982 Feb; 21(4):721-8. PubMed ID: 7200372 [TBL] [Abstract][Full Text] [Related]
3. The effects of fibrinogen and its cleavage products on the kinetics of plasminogen activation by urokinase and subsequent plasmin activity. Lucas MA; Straight DL; Fretto LJ; McKee PA J Biol Chem; 1983 Oct; 258(20):12171-7. PubMed ID: 6226655 [TBL] [Abstract][Full Text] [Related]
4. The role of the lysine binding sites of human plasminogen in the fibrinogen stimulated rate of active site formation in the streptokinase-plasminogen equimolar complex. Smith JH; Morris JP; Chibber BA; Castellino FJ Thromb Res; 1984 Jun; 34(6):499-506. PubMed ID: 6429889 [TBL] [Abstract][Full Text] [Related]
5. The activation of Glu- and Lys-plasminogens by streptokinase: effects of fibrin, fibrinogen and their degradation products. Takada A; Takada Y; Sugawara Y Thromb Res; 1985 Feb; 37(3):465-75. PubMed ID: 3992529 [TBL] [Abstract][Full Text] [Related]
6. Kinetic analysis of covalent hybrid plasminogen activators: effect of CNBr-degraded fibrinogen on kinetic parameters of Glu1-plasminogen activation. Lee PP; Wohl RC; Boreisha IG; Robbins KC Biochemistry; 1988 Sep; 27(19):7506-13. PubMed ID: 2974723 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the interactions of plasminogen and tissue and vampire bat plasminogen activators with fibrinogen, fibrin, and the complex of D-dimer noncovalently linked to fragment E. Stewart RJ; Fredenburgh JC; Weitz JI J Biol Chem; 1998 Jul; 273(29):18292-9. PubMed ID: 9660794 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of activation of mammalian plasma fibrinolytic systems with streptokinase and with recombinant staphylokinase. Collen D; Van Hoef B; Schlott B; Hartmann M; Gührs KH; Lijnen HR Eur J Biochem; 1993 Aug; 216(1):307-14. PubMed ID: 7689966 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of the streptokinase-induced activation of human plasminogen by human fibrinogen and human fibrinogen fragment D1. Castellino FJ; Strickland DK; Morris JP; Smith J; Chibber B Ann N Y Acad Sci; 1983 Jun; 408():595-601. PubMed ID: 6575703 [No Abstract] [Full Text] [Related]
10. Interaction of plasminogen and fibrin in plasminogen activation. Wu HL; Chang BI; Wu DH; Chang LC; Gong CC; Lou KL; Shi GY J Biol Chem; 1990 Nov; 265(32):19658-64. PubMed ID: 2174048 [TBL] [Abstract][Full Text] [Related]
11. Control of human plasminogen activation. Castellino FJ; Urano T; de Serrano V; Morris JP; Chibber BA Haemostasis; 1988; 18 Suppl 1():15-23. PubMed ID: 3127307 [TBL] [Abstract][Full Text] [Related]
12. Kinetic analyses of the activation of Glu-plasminogen by urokinase in the presence of fibrin, fibrinogen or its degradation products. Watahiki Y; Takada Y; Takada A Thromb Res; 1987 Apr; 46(1):9-18. PubMed ID: 3590117 [TBL] [Abstract][Full Text] [Related]
13. A monoclonal antibody to the epsilon-aminocaproic acid binding site on the kringle 4 region of human plasminogen that accelerates the activation of Glu1-plasminogen by urokinase. Cummings HS; Castellino FJ Arch Biochem Biophys; 1985 Feb; 236(2):612-8. PubMed ID: 2982318 [TBL] [Abstract][Full Text] [Related]
14. The effector roles of kringle 1 and kringle 2 in the enzymatic properties of recombinant tissue-type plasminogen activator as revealed by generation of recombinant molecules containing each kringle linked to the protease domain. Rydzewski A; Castellino FJ Arch Biochem Biophys; 1993 Jan; 300(1):472-82. PubMed ID: 8424682 [TBL] [Abstract][Full Text] [Related]
15. Fibrin and plasminogen structures essential to stimulation of plasmin formation by tissue-type plasminogen activator. Suenson E; Petersen LC Biochim Biophys Acta; 1986 Apr; 870(3):510-9. PubMed ID: 2938632 [TBL] [Abstract][Full Text] [Related]
16. Fragment E-2 from fibrin substantially enhances pro-urokinase-induced Glu-plasminogen activation. A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK. Liu JN; Gurewich V Biochemistry; 1992 Jul; 31(27):6311-7. PubMed ID: 1385727 [TBL] [Abstract][Full Text] [Related]
17. Kinetic analyses of potentiation of plasminogen activation by streptokinase in the presence of fibrin or its degradation products. Takada Y; Takada A Haemostasis; 1987; 17(1-2):1-7. PubMed ID: 3596355 [TBL] [Abstract][Full Text] [Related]
18. Full time course kinetics of the streptokinase-plasminogen activation pathway. Nolan M; Bouldin SD; Bock PE J Biol Chem; 2013 Oct; 288(41):29482-93. PubMed ID: 23970549 [TBL] [Abstract][Full Text] [Related]
19. Potentiation of the activation of Glu-plasminogen by streptokinase and urokinase in the presence of fibrinogen degradation products. Takada A; Takada Y Thromb Res; 1982 Feb; 25(3):229-35. PubMed ID: 7038978 [TBL] [Abstract][Full Text] [Related]
20. Effectors of the activation of human [Glu1]plasminogen by human tissue plasminogen activator. Urano T; Sator de Serrano V; Gaffney PJ; Castellino FJ Biochemistry; 1988 Aug; 27(17):6522-8. PubMed ID: 3146348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]