These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4041453)

  • 1. Na+-independent dehydro-L-ascorbic acid uptake in renal brush-border membrane vesicles.
    Bianchi J; Rose RC
    Biochim Biophys Acta; 1985 Sep; 819(1):75-82. PubMed ID: 4041453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of L-ascorbic acid and dehydro-L-ascorbic acid across renal cortical basolateral membrane vesicles.
    Bianchi J; Rose RC
    Biochim Biophys Acta; 1985 Nov; 820(2):265-73. PubMed ID: 4052423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydroascorbic acid and ascorbic acid transport systems in the guinea pig ileum.
    Bianchi J; Wilson FA; Rose RC
    Am J Physiol; 1986 Apr; 250(4 Pt 1):G461-8. PubMed ID: 3963192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylalanine uptake in isolated renal brush border vesicles.
    Evers J; Murer H; Kinne R
    Biochim Biophys Acta; 1976 Apr; 426(4):598-615. PubMed ID: 1259984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of L-cysteine by rat renal brush border membrane vesicles.
    Stieger B; Stange G; Biber J; Murer H
    J Membr Biol; 1983; 73(1):25-37. PubMed ID: 6864766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose modulates vitamin C transport in adult human small intestinal brush border membrane vesicles.
    Malo C; Wilson JX
    J Nutr; 2000 Jan; 130(1):63-9. PubMed ID: 10613768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactate-sodium cotransport in rat renal brush border membranes.
    Barac-Nieto M; Murer H; Kinne R
    Am J Physiol; 1980 Nov; 239(5):F496-506. PubMed ID: 6159793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+ transport by brush border membrane from rat kidney.
    Bernier M; Strévey J; Brunette MG; Béliveau R
    Biochem Biophys Res Commun; 1984 Sep; 123(2):562-8. PubMed ID: 6487301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of p-aminohippurate, tetraethylammonium and D-glucose in renal brush border membranes from rats with acute renal failure.
    Hori R; Takano M; Okano T; Inui K
    J Pharmacol Exp Ther; 1985 Jun; 233(3):776-81. PubMed ID: 2989496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles.
    Takano M; Inui K; Okano T; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jun; 773(1):113-24. PubMed ID: 6733090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles.
    Sacktor B; Beck JC
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():159-69. PubMed ID: 616356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.
    Tiruppathi C; Kulanthaivel P; Ganapathy V; Leibach FH
    Biochem J; 1990 May; 268(1):27-33. PubMed ID: 2160811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gamma-aminobutyric acid-specific transport mechanism in mammalian kidney.
    Goodyer PR; Rozen R; Scriver CR
    Biochim Biophys Acta; 1985 Aug; 818(1):45-54. PubMed ID: 3925996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal metabolism of the oxidized form of ascorbic acid (dehydro-L-ascorbic acid).
    Rose RC
    Am J Physiol; 1989 Jan; 256(1 Pt 2):F52-6. PubMed ID: 2912166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion dependence of cystine and lysine uptake by rat renal brush-border membrane vesicles.
    McNamara PD; Rea CT; Segal S
    Biochim Biophys Acta; 1992 Jan; 1103(1):101-8. PubMed ID: 1730012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurine transport in renal brush-border-membrane vesicles.
    Rozen R; Tenenhouse HS; Scriver CR
    Biochem J; 1979 Apr; 180(1):245-8. PubMed ID: 486101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H; Stange G; Kinne R; Murer H
    Biochem J; 1978 Sep; 174(3):951-8. PubMed ID: 581553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.