These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4041468)

  • 1. Inactivation of chlorophyllase by negatively charged plant membrane lipids.
    Lambers JW; Terpstra W
    Biochim Biophys Acta; 1985 Oct; 831(2):225-35. PubMed ID: 4041468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of neutral and anionic lipids on digalactosyldiacylglycerol vesicle aggregation.
    Webb MS; Green BR
    Biochim Biophys Acta; 1990 Dec; 1030(2):231-7. PubMed ID: 2261485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles.
    Hincha DK; Crowe JH
    Biochim Biophys Acta; 1996 Oct; 1284(2):162-70. PubMed ID: 8914580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex.
    Kansy M; Wilhelm C; Goss R
    Planta; 2014 Oct; 240(4):781-96. PubMed ID: 25063517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of chloroplast membrane lipids in abiotic stress responses.
    Li J; Liu LN; Meng Q; Fan H; Sui N
    Plant Signal Behav; 2020 Nov; 15(11):1807152. PubMed ID: 32815751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of lecithin liposomes on chlorophyllase-catalyzed chlorophyll hydrolysis: comparison of intramembraneous and solubilized Phaeodactylum chlorophyllase.
    Terpstra W
    Biochim Biophys Acta; 1980 Jul; 600(1):36-47. PubMed ID: 7397173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of plant lipids with 14 kDa phospholipase A2 enzymes.
    Vishwanath BS; Eichenberger W; Frey FJ; Frey BM
    Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):93-9. PubMed ID: 8947472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.
    Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G
    Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of lipids on MGD1 membrane binding highlights novel mechanisms for galactolipid biosynthesis regulation in chloroplasts.
    Sarkis J; Rocha J; Maniti O; Jouhet J; Vié V; Block MA; Breton C; Maréchal E; Girard-Egrot A
    FASEB J; 2014 Jul; 28(7):3114-23. PubMed ID: 24692595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling.
    Peng Z; Feng L; Wang X; Miao X
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Dec; 1864(12):158522. PubMed ID: 31487556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability and electrical properties of planar lipid membranes from thylakoid lipids.
    Fuks B; Homblé F
    Biophys J; 1994 May; 66(5):1404-14. PubMed ID: 8061192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata.
    Schaller-Laudel S; Latowski D; Jemioła-Rzemińska M; Strzałka K; Daum S; Bacia K; Wilhelm C; Goss R
    Physiol Plant; 2017 Jul; 160(3):339-358. PubMed ID: 28317130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental effects on acidic lipids of thylakoid membranes.
    Sato N; Hagio M; Wada H; Tsuzuki M
    Biochem Soc Trans; 2000 Dec; 28(6):912-4. PubMed ID: 11171255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane.
    Goss R; Nerlich J; Lepetit B; Schaller S; Vieler A; Wilhelm C
    J Plant Physiol; 2009 Nov; 166(17):1839-54. PubMed ID: 19604599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of LHCII aggregation by different thylakoid membrane lipids.
    Schaller S; Latowski D; Jemioła-Rzemińska M; Dawood A; Wilhelm C; Strzałka K; Goss R
    Biochim Biophys Acta; 2011 Mar; 1807(3):326-35. PubMed ID: 21215252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c.
    Rytömaa M; Kinnunen PK
    J Biol Chem; 1994 Jan; 269(3):1770-4. PubMed ID: 8294426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of Triton X-100 soluble chlorophyllase in liposomes.
    Moll WA; Stegwee D
    Planta; 1978 Jan; 140(1):75-80. PubMed ID: 24414364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of calcium-induced aggregation on the physical stability of liposomes containing plant glycolipids.
    Hincha DK
    Biochim Biophys Acta; 2003 Apr; 1611(1-2):180-6. PubMed ID: 12659959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Assessment of the Chloroplast Lipidome.
    Gros V; Jouhet J
    Methods Mol Biol; 2024; 2776():231-242. PubMed ID: 38502508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the extended lipid anchorage with cytochrome c and liposomes containing diacylphosphatidylglycerol lipids.
    Abbott BM; Lee J; Mohn ES; Barden MM; Overly KR; Breen JJ
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1187-1192. PubMed ID: 29432713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.