These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 4041537)
1. Macro- and micro-stabilities of the kringle 4 domain from plasminogen. The effect of ligand binding. De Marco A; Motta A; Llinás M; Laursen RA Biophys J; 1985 Sep; 48(3):411-22. PubMed ID: 4041537 [TBL] [Abstract][Full Text] [Related]
2. Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR. Marti DN; Hu CK; An SS; von Haller P; Schaller J; Llinás M Biochemistry; 1997 Sep; 36(39):11591-604. PubMed ID: 9305949 [TBL] [Abstract][Full Text] [Related]
3. Analysis of ligand-binding to the kringle 4 fragment from human plasminogen. De Marco A; Petros AM; Laursen RA; Llinás M Eur Biophys J; 1987; 14(6):359-68. PubMed ID: 3036485 [TBL] [Abstract][Full Text] [Related]
4. 1H-NMR spectroscopic manifestations of ligand binding to the kringle 4 domain of human plasminogen. De Marco A; Laursen RA; Llinas M Arch Biochem Biophys; 1986 Feb; 244(2):727-41. PubMed ID: 3004350 [TBL] [Abstract][Full Text] [Related]
5. 600 MHz H nuclear magnetic resonance studies of the kringle 4 fragment of human plasminogen. Hochschwender SM; Laursen RA; De Marco A; Llinas M Arch Biochem Biophys; 1983 May; 223(1):58-67. PubMed ID: 6305276 [TBL] [Abstract][Full Text] [Related]
6. Ligand binding to the tissue-type plasminogen activator kringle 2 domain: structural characterization by 1H-NMR. Byeon IJ; Kelley RF; Mulkerrin MG; An SS; Llinás M Biochemistry; 1995 Mar; 34(9):2739-50. PubMed ID: 7893685 [TBL] [Abstract][Full Text] [Related]
7. Complete assignment of the aromatic proton magnetic resonance spectrum of the kringle 1 domain from human plasminogen: structure of the ligand-binding site. Motta A; Laursen RA; Llinás M; Tulinsky A; Park CH Biochemistry; 1987 Jun; 26(13):3827-36. PubMed ID: 2820478 [TBL] [Abstract][Full Text] [Related]
8. Ligand interactions with the kringle 5 domain of plasminogen. A study by 1H NMR spectroscopy. Thewes T; Constantine K; Byeon IJ; Llinás M J Biol Chem; 1990 Mar; 265(7):3906-15. PubMed ID: 2105955 [TBL] [Abstract][Full Text] [Related]
9. Recombinant gene expression and 1H NMR characteristics of the kringle (2 + 3) supermodule: spectroscopic/functional individuality of plasminogen kringle domains. Söhndel S; Hu CK; Marti D; Affolter M; Schaller J; Llinás M; Rickli EE Biochemistry; 1996 Feb; 35(7):2357-64. PubMed ID: 8652577 [TBL] [Abstract][Full Text] [Related]
10. A 1H-NMR study of isolated domains from human plasminogen. Structural homology between kringles 1 and 4. Llinas M; De Marco A; Hochschwender SM; Laursen RA Eur J Biochem; 1983 Oct; 135(3):379-91. PubMed ID: 6311534 [TBL] [Abstract][Full Text] [Related]
11. Ligand-binding effects on the kringle 4 domain from human plasminogen: a study by laser photo-CIDNP 1H-NMR spectroscopy. De Marco A; Petros AM; Llinás M; Kaptein R; Boelens R Biochim Biophys Acta; 1989 Feb; 994(2):121-37. PubMed ID: 2535939 [TBL] [Abstract][Full Text] [Related]
12. Tissue-type plasminogen activator domain-deletion mutant BM 06.022: modular stability, inhibitor binding, and activation cleavage. Hu CK; Kohnert U; Wilhelm O; Fischer S; Llinás M Biochemistry; 1994 Oct; 33(39):11760-6. PubMed ID: 7918392 [TBL] [Abstract][Full Text] [Related]
13. Proton magnetic resonance study of lysine-binding to the kringle 4 domain of human plasminogen. The structure of the binding site. Ramesh V; Petros AM; Llinás M; Tulinsky A; Park CH J Mol Biol; 1987 Dec; 198(3):481-98. PubMed ID: 2828641 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the aromatic 1H-NMR spectrum of the kringle 5 domain from human plasminogen. Evidence for a conserved kringle fold. Thewes T; Ramesh V; Simplaceanu EL; Llinás M Eur J Biochem; 1988 Aug; 175(2):237-49. PubMed ID: 2841130 [TBL] [Abstract][Full Text] [Related]
15. 1H NMR studies of aliphatic ligand binding to human plasminogen kringle 4. Petros AM; Ramesh V; Llinás M Biochemistry; 1989 Feb; 28(3):1368-76. PubMed ID: 2496756 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Christensen T; Svensson B; Sigurskjold BW Biochemistry; 1999 May; 38(19):6300-10. PubMed ID: 10320360 [TBL] [Abstract][Full Text] [Related]
17. Reversible independent unfolding of the domains of urokinase monitored by 1H NMR. Bogusky MJ; Dobson CM; Smith RA Biochemistry; 1989 Aug; 28(16):6728-35. PubMed ID: 2790026 [TBL] [Abstract][Full Text] [Related]
18. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes. Felitsky DJ; Record MT Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610 [TBL] [Abstract][Full Text] [Related]
19. Domain interactions in human plasminogen studied by proton NMR. Teuten AJ; Smith RA; Dobson CM FEBS Lett; 1991 Jan; 278(1):17-22. PubMed ID: 1847112 [TBL] [Abstract][Full Text] [Related]
20. Isolation, purification and 1H-NMR characterization of a kringle 5 domain fragment from human plasminogen. Thewes T; Ramesh V; Simplaceanu EL; Llinás M Biochim Biophys Acta; 1987 Apr; 912(2):254-69. PubMed ID: 3030435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]