These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 4041829)

  • 1. Hydrogen ion buffering during complete brain ischemia.
    Kraig RP; Pulsinelli WA; Plum F
    Brain Res; 1985 Sep; 342(2):281-90. PubMed ID: 4041829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonic acid buffer changes during complete brain ischemia.
    Kraig RP; Pulsinelli WA; Plum F
    Am J Physiol; 1986 Mar; 250(3 Pt 2):R348-57. PubMed ID: 3082219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentation of acid-base balance in brain during complete ischemia.
    Plum F; Kraig RP; Pulsinelli WA
    Neurochem Pathol; 1988; 9():139-44. PubMed ID: 3247068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated brain lactate accumulation and increased neurologic deficit are associated with modest hyperglycemia in global brain ischemia.
    Natale JE; Stante SM; D'Alecy LG
    Resuscitation; 1990 Jun; 19(3):271-89. PubMed ID: 2164249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of dichloroacetate on brain lactate levels following incomplete ischemia in the hyperglycemic rat.
    Colohan AR; Welsh FA; Miller ED; Kassell NF
    Stroke; 1986; 17(3):525-8. PubMed ID: 3715955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional brain energy metabolism after complete versus incomplete ischemia in the rat in the absence of severe lactic acidosis.
    Yoshida S; Busto R; Martinez E; Scheinberg P; Ginsberg MD
    J Cereb Blood Flow Metab; 1985 Dec; 5(4):490-501. PubMed ID: 4055923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preischemic hyperglycemia-aggravated damage: evidence that lactate utilization is beneficial and glucose-induced corticosterone release is detrimental.
    Schurr A; Payne RS; Miller JJ; Tseng MT
    J Neurosci Res; 2001 Dec; 66(5):782-9. PubMed ID: 11746402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats.
    Wagner SR; Lanier WL
    Anesthesiology; 1994 Dec; 81(6):1516-26. PubMed ID: 7992921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of hypo- or hyperglycemia on brain metabolism in experimental cerebral ischemia].
    Nakatomi Y; Fujishima M; Yoshida F; Ibayashi S; Shiokawa O; Omae T
    No To Shinkei; 1983 Feb; 35(2):161-5. PubMed ID: 6849711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence against major compartmentalization of H+ in ischemic rat brain tissue.
    Boris-Möller F; Drakenberg T; Elmdén K; Forsén S; Siesjö BK
    Neurosci Lett; 1988 Feb; 85(1):113-8. PubMed ID: 3362406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate and postischemic recovery of energy metabolism and electrical activity in the isolated perfused rat brain.
    Bock A; Tegtmeier F; Hansen AJ; Höller M
    J Neurosurg Anesthesiol; 1993 Apr; 5(2):94-103. PubMed ID: 8490317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels.
    Widmer H; Abiko H; Faden AI; James TL; Weinstein PR
    J Cereb Blood Flow Metab; 1992 May; 12(3):456-68. PubMed ID: 1569139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitating postischemic reduction of cerebral lactate in rats.
    Dimlich RV; Nielsen MM
    Stroke; 1992 Aug; 23(8):1145-52; discussion 1152-3. PubMed ID: 1636190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen ions kill brain at concentrations reached in ischemia.
    Kraig RP; Petito CK; Plum F; Pulsinelli WA
    J Cereb Blood Flow Metab; 1987 Aug; 7(4):379-86. PubMed ID: 3611202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue lactate content and tissue PCO2 in complete brain ischaemia: implications for compartmentation of H+.
    Ekholm A; Katsura K; Siesjö BK
    Neurol Res; 1991 Jun; 13(2):74-6. PubMed ID: 1682843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral blood flow and tissue metabolism in experimental cerebral ischemia of spontaneously hypertensive rats with hyper-, normo-, and hypoglycemia.
    Ibayashi S; Fujishima M; Sadoshima S; Yoshida F; Shiokawa O; Ogata J; Omae T
    Stroke; 1986; 17(2):261-6. PubMed ID: 3961837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation.
    Mutch WA; Hansen AJ
    J Cereb Blood Flow Metab; 1984 Mar; 4(1):17-27. PubMed ID: 6693512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31P and 1H magnetic resonance spectroscopy.
    Bolas NM; Rajagopalan B; Mitsumori F; Radda GK
    Stroke; 1988 May; 19(5):608-14. PubMed ID: 3363594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of energy failure and dissipative K+ flux during ischemia: role of preischemic plasma glucose concentration.
    Ekholm A; Katsura K; Siesjö BK
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):193-200. PubMed ID: 8436610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperglycemic versus normoglycemic stroke: topography of brain metabolites, intracellular pH, and infarct size.
    Wagner KR; Kleinholz M; de Courten-Myers GM; Myers RE
    J Cereb Blood Flow Metab; 1992 Mar; 12(2):213-22. PubMed ID: 1548294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.