These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 404185)

  • 41. Dimethyl sulphoxide enhances the effects of P(i) in myofibrils and inhibits the activity of rabbit skeletal muscle contractile proteins.
    Mariano AC; Alexandre GM; Silva LC; Romeiro A; Cameron LC; Chen Y; Chase PB; Sorenson MM
    Biochem J; 2001 Sep; 358(Pt 3):627-36. PubMed ID: 11535124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of magnesium in the relaxation of myofibrils.
    Herz R; Weber A; Reiss I
    Biochemistry; 1969 Jun; 8(6):2266-71. PubMed ID: 4240513
    [No Abstract]   [Full Text] [Related]  

  • 43. [Aggregation of isolated myofibrils stimulated by their contraction. I. Origin of the second phase of optical changes during myofibril contraction].
    Shelud'ko NS; Kropacheva IV; Iudin IuK
    Biofizika; 1989; 34(3):473-7. PubMed ID: 2788462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The contraction state of myofibrils during global ischemia and after reperfusion following different forms of cardiac arrest. Correlation with metabolic parameters in the canine heart.
    Schmiedl A; Schnabel PA; Richter J; Gebhard MM; Bretschneider HJ
    Pathol Res Pract; 1994 May; 190(5):482-92. PubMed ID: 7991468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorescence microscope study of the binding of added C protein to skeletal muscle myofibrils.
    Moos C
    J Cell Biol; 1981 Jul; 90(1):25-31. PubMed ID: 6788782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relationship of isometric unexplained energy production to parvalbumin content in frog skeletal muscle.
    Rall JA
    Prog Clin Biol Res; 1989; 315():117-26. PubMed ID: 2678152
    [No Abstract]   [Full Text] [Related]  

  • 47. A proposal for the mechanism of muscle contraction at the molecular level.
    Warner DT
    J Theor Biol; 1970 Feb; 26(2):289-313. PubMed ID: 5434348
    [No Abstract]   [Full Text] [Related]  

  • 48. Analysis of muscle contraction by tritium incorporation.
    Bárány M; Bárány K; Gaetjens E
    J Biol Chem; 1973 Aug; 248(15):5389-94. PubMed ID: 4543784
    [No Abstract]   [Full Text] [Related]  

  • 49. Tension generation by isolated myofibrils.
    Borejdo J; Schweitzer A
    J Mechanochem Cell Motil; 1977 Sep; 4(3):189-204. PubMed ID: 753900
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Toward an understanding of the regulation of myofibrillar function.
    Moss RL; de Tombe PP; Solaro RJ
    J Gen Physiol; 2019 Jan; 151(1):1-2. PubMed ID: 30578329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulation of tension generation at the myofibrillar level -- an analysis of the effect of magnesium adenosine triphosphate, magnesium, pH, sarcomere length and state of phosphorylation.
    Rupp H
    Basic Res Cardiol; 1980; 75(2):295-317. PubMed ID: 6967310
    [No Abstract]   [Full Text] [Related]  

  • 52. Regulatory and cytoskeletal proteins of vertebrate skeletal muscle.
    Ohtsuki I; Maruyama K; Ebashi S
    Adv Protein Chem; 1986; 38():1-67. PubMed ID: 3541537
    [No Abstract]   [Full Text] [Related]  

  • 53. [Electron microscopic studies of the specific interactions of actomyosin with magnesium and calcium ions].
    Martineau H; Pinset-Härström I
    J Ultrastruct Res; 1969 Feb; 26(3):251-61. PubMed ID: 5780595
    [No Abstract]   [Full Text] [Related]  

  • 54. Nickel substitution for calcium in excitation-contraction coupling of skeletal muscle.
    Fischman DA; Swan RC
    J Gen Physiol; 1967 Jul; 50(6):1709-28. PubMed ID: 4227212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Length-force relation of calcium activated muscle fibers.
    Schoenberg M; Podolsky RJ
    Science; 1972 Apr; 176(4030):52-4. PubMed ID: 5061575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [The calcium level in living and isolated muscle fibrils of Maia squinado and its regulation by sarcoplasmatic vesicles].
    Portzehl H; Zaoralek P; Grieder A
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1965 Sep; 286(1):44-56. PubMed ID: 5221062
    [No Abstract]   [Full Text] [Related]  

  • 57. Caffeine contracture of frog skeletal muscle and of single muscle fibers.
    Gebert G
    Am J Physiol; 1968 Aug; 215(2):296-8. PubMed ID: 5665159
    [No Abstract]   [Full Text] [Related]  

  • 58. Does phosphate release limit the ATPases of soleus myofibrils? Evidence that (A)M. ADP.Pi states predominate on the cross-bridge cycle.
    Iorga B; Candau R; Travers F; Barman T; Lionne C
    J Muscle Res Cell Motil; 2004; 25(4-5):367-78. PubMed ID: 15548866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ionic strength and the contraction kinetics of skinned muscle fibers.
    Thames MD; Teichholz LE; Podolsky RJ
    J Gen Physiol; 1974 Apr; 63(4):509-30. PubMed ID: 4544880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comments on 'a mechanochemical model for muscular contraction', paper by Chaplain and Frommelt.
    Kushmerick MJ; Davies RE
    J Mechanochem Cell Motil; 1972 Aug; 1(3):170-3. PubMed ID: 4278037
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.