These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 404185)

  • 61. Evidence from insect fibrillar muscle about the elementary contractile process.
    Pringle JW
    J Gen Physiol; 1967 Jul; 50(6):Suppl:139-56. PubMed ID: 4228625
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of denervating skeletal muscle on calcium binding by isolated sarcolemma.
    Thorpe WR; Seeman P
    Exp Neurol; 1971 Feb; 30(2):277-90. PubMed ID: 5547253
    [No Abstract]   [Full Text] [Related]  

  • 63. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus.
    Winegrad S
    J Gen Physiol; 1968 Jan; 51(1):65-83. PubMed ID: 4868186
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ca2+ binding to skeletal muscle troponin C in skeletal and cardiac myofibrils.
    Morimoto S; Ohtsuki I
    J Biochem; 1989 Mar; 105(3):435-9. PubMed ID: 2525123
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nucleotide binding to myosin in calcium activated muscle.
    Marston SB; Tregear RT
    Biochim Biophys Acta; 1974 Mar; 333(3):581-4. PubMed ID: 4277060
    [No Abstract]   [Full Text] [Related]  

  • 66. The contraction of "ghost" myofibrils and glycerinated muscle fibers irrigated with heavy meromyosin subfragment-1.
    Oplatka A; Gadasi H; Borejdo J
    Biochem Biophys Res Commun; 1974 Jun; 58(4):905-12. PubMed ID: 4276130
    [No Abstract]   [Full Text] [Related]  

  • 67. Transverse stiffness of myofibrils of skeletal and cardiac muscles studied by atomic force microscopy.
    Akiyama N; Ohnuki Y; Kunioka Y; Saeki Y; Yamada T
    J Physiol Sci; 2006 Apr; 56(2):145-51. PubMed ID: 16839448
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The appearance of a functional contractile apparatus in developing muscle.
    Hitchcock SE
    Dev Biol; 1970 Nov; 23(3):399-423. PubMed ID: 4249595
    [No Abstract]   [Full Text] [Related]  

  • 69. ATP hydrolysis by shortening myofibrils.
    Ohno T; Kodama T
    Prog Clin Biol Res; 1989; 315():69-73. PubMed ID: 2798521
    [No Abstract]   [Full Text] [Related]  

  • 70. Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase.
    Ray KP; England PJ
    FEBS Lett; 1976 Nov; 70(1):11-6. PubMed ID: 136365
    [No Abstract]   [Full Text] [Related]  

  • 71. Pharmacology of excitation-contraction coupling in muscle. Introduction: statement of the problem.
    Bianchi CP
    Fed Proc; 1969; 28(5):1624-7. PubMed ID: 5811734
    [No Abstract]   [Full Text] [Related]  

  • 72. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle.
    Martonosi AN
    Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of N-Terminal Extension of Cardiac Troponin I on the Ca(2+) Regulation of ATP Binding and ADP Dissociation of Myosin II in Native Cardiac Myofibrils.
    Gunther LK; Feng HZ; Wei H; Raupp J; Jin JP; Sakamoto T
    Biochemistry; 2016 Mar; 55(12):1887-97. PubMed ID: 26862665
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of glucocorticoid treatment on excitation-contraction coupling.
    Laszewski B; Ruff RL
    Am J Physiol; 1985 Mar; 248(3 Pt 1):E363-9. PubMed ID: 3976885
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Calcium regulates troponin-tropomyosin binding in the reconstituted thin filament.
    Lin TI; Lambert P; Dowben RM
    Biochem Biophys Res Commun; 1983 Jul; 114(2):447-51. PubMed ID: 6411086
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A type of contraction hypothesis applicable to all muscles.
    Elliott GF; Rome EM; Spencer M
    Nature; 1970 May; 226(5244):417-20. PubMed ID: 4245372
    [No Abstract]   [Full Text] [Related]  

  • 77. The location of muscle calcium with respect to the myofibrils.
    Winegrad S
    J Gen Physiol; 1965 Jul; 48(6):997-1002. PubMed ID: 5855513
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Activation of glucose transport in muscle by exercise.
    Holloszy JO; Constable SH; Young DA
    Diabetes Metab Rev; 1986; 1(4):409-23. PubMed ID: 3522139
    [No Abstract]   [Full Text] [Related]  

  • 79. Actomyosin ATPase mechanism and muscle contraction.
    Taylor EW
    Prog Clin Biol Res; 1989; 315():9-14. PubMed ID: 2529574
    [No Abstract]   [Full Text] [Related]  

  • 80. Model of calcium movements during activation in the sarcomere of frog skeletal muscle.
    Cannell MB; Allen DG
    Biophys J; 1984 May; 45(5):913-25. PubMed ID: 6733242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.